SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(externe Quelle)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://doi.org/10.17645/up.v3i1.1231

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Investigating the Emotional Responses of Individuals to Urban Green Space Using Twitter Data: A Critical Comparison of Three Different Methods of Sentiment Analysis

[Zeitschriftenartikel]

Chapman, Lee
Resch, Bernd
Sadler, Jon
Zimmer, Stefan
Roberts, Helen
Petutschnig, Andreas

Abstract

In urban research, Twitter data have the potential to provide additional information about urban citizens, their activities, mobility patterns and emotion. Extracting the sentiment present in tweets is increasingly recognised as a valuable approach to gathering information on the mood, opinion and e... mehr

In urban research, Twitter data have the potential to provide additional information about urban citizens, their activities, mobility patterns and emotion. Extracting the sentiment present in tweets is increasingly recognised as a valuable approach to gathering information on the mood, opinion and emotional responses of individuals in a variety of contexts. This article evaluates the potential of deriving emotional responses of individuals while they experience and interact with urban green space. A corpus of over 10,000 tweets relating to 60 urban green spaces in Birmingham, United Kingdom was analysed for positivity, negativity and specific emotions, using manual, semi-automated and automated methods of sentiment analysis and the outputs of each method compared. Similar numbers of tweets were annotated as positive/neutral/negative by all three methods; however, inter-method consistency in tweet assignment between the methods was low. A comparison of all three methods on the same corpus of tweets, using character emojis as an additional quality control, identifies a number of limitations associated with each approach. The results presented have implications for urban planners in terms of the choices available to identify and analyse the sentiment present in tweets, and the importance of choosing the most appropriate method. Future attempts to develop more reliable and accurate algorithms of sentiment analysis are needed and should focus on semi-automated methods.... weniger

Klassifikation
Raumplanung und Regionalforschung
interaktive, elektronische Medien

Freie Schlagwörter
Twitter; emotions; sentiment analysis; urban green space; urban planning

Sprache Dokument
Englisch

Publikationsjahr
2018

Seitenangabe
S. 21-33

Zeitschriftentitel
Urban Planning, 3 (2018) 1

Heftthema
Crowdsourced Data and Social Media in Participatory Urban Planning

ISSN
2183-7635

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.