SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(externe Quelle)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://doi.org/10.17645/up.v3i1.1269

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Social and Physical Characterization of Urban Contexts: Techniques and Methods for Quantification, Classification and Purposive Sampling

[Zeitschriftenartikel]

Serra, Miguel
Psarra, Sophia
O'Brien, Jamie

Abstract

Robust quantitative descriptions of the social and physical characteristics of urban contexts are essential for assessing the impacts of urban environments on other, potentially dependent variables. Common methodologies used for that purpose, however, are either coarse or suffer from biasing effects... mehr

Robust quantitative descriptions of the social and physical characteristics of urban contexts are essential for assessing the impacts of urban environments on other, potentially dependent variables. Common methodologies used for that purpose, however, are either coarse or suffer from biasing effects. At the social level, the use of indicators encoded into pre-defined areal units, makes results prone to the Modifiable Areal Unit Problem. At the physical level, the adopted morphological indicators are usually highly aggregated descriptors of urban form. Moreover, there is a lack of explicit methodologies for the purposive sampling of urban contexts with specific combinations of social and physical characteristics, which - we argue - may be more effective than probabilistic sampling, when exploring phenomena as elusive as the effects of urban contextual factors. This article presents a set of GIS-based methods for addressing these issues, based on: a) local indicators of spatial association; b) detailed quantitative morphological descriptions, coupled with unsupervised classification techniques; and c) purposive sampling strategies carried out on the data generated by the proposed context characterization methods (a and b). The methods are illustrated through the characterization of the urban contexts of the 77 state-sector secondary schools in Liverpool, but are generalizable across all categories of urban objects and are independent of the geographical context of implementation.... weniger

Klassifikation
Raumplanung und Regionalforschung

Freie Schlagwörter
characterization; morphological; purposive sampling; socio-economic; urban context

Sprache Dokument
Englisch

Publikationsjahr
2018

Seitenangabe
S. 58-74

Zeitschriftentitel
Urban Planning, 3 (2018) 1

Heftthema
Crowdsourced Data and Social Media in Participatory Urban Planning

ISSN
2183-7635

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.