SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(externe Quelle)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://doi.org/10.12758/mda.2017.05

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Surpassing Simple Aggregation: Advanced Strategies for Analyzing Contextual-Level Outcomes in Multilevel Models

[Zeitschriftenartikel]

Becker, Dominik
Breustedt, Wiebke
Zuber, Christina Isabel

Abstract

This article introduces two advanced analytical strategies for analyzing contextual-level outcomes in multilevel models: the multilevel SEM and the two-step approach. Since these strategies are seldom used in comparative survey research, we first discuss their methodological and statistical advantag... mehr

This article introduces two advanced analytical strategies for analyzing contextual-level outcomes in multilevel models: the multilevel SEM and the two-step approach. Since these strategies are seldom used in comparative survey research, we first discuss their methodological and statistical advantages over the more commonly applied approach of group mean aggregation. We then illustrate these advantages in an empirical analysis of the effect of citizens' support for democratic values at the individual level on a contextual-level outcome - the persistence of democracy - drawing on data from the World Values Survey and the Quality of Government project. Whereas we found no significant effect of support for democratic values in the model using simple group mean aggregation, citizens' support for democratic values was a significant predictor of democracies' estimated survival rate when applying latent aggregation in multilevel SEM and the two-step approach. The article corroborates previous concerns with simple aggregation and demonstrates how researchers can improve the validity of their analyses of contextual-level outcomes by using alternative strategies of aggregation.... weniger

Thesaurusschlagwörter
politische Einstellung; Demokratie; Wertorientierung; politische Stabilität; Daten; Mehrebenenanalyse; Aggregation; Stichprobenfehler; Umfrageforschung; vergleichende Forschung

Klassifikation
Erhebungstechniken und Analysetechniken der Sozialwissenschaften
politische Willensbildung, politische Soziologie, politische Kultur

Freie Schlagwörter
transformational mechanisms; contextual level outcomes

Sprache Dokument
Englisch

Publikationsjahr
2018

Seitenangabe
S. 233-263

Zeitschriftentitel
Methods, data, analyses : a journal for quantitative methods and survey methodology (mda), 12 (2018) 2

Heftthema
Comparative Survey Analysis: Models, Techniques, and Applications

ISSN
2190-4936

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung 3.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.