SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(322.9 KB)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-57723-2

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Towards a Gold Standard Corpus for Variable Detection and Linking in Social Science Publications

[Konferenzbeitrag]

Zielinski, Andrea
Mutschke, Peter

Körperschaftlicher Herausgeber
European Language Resources Association (ELRA)

Abstract

In this paper, we describe our effort to create a new corpus for the evaluation of detecting and linking so-called survey variables in social science publications (e.g., "Do you believe in Heaven?"). The task is to recognize survey variable mentions in a given text, disambiguate them, and link them... mehr

In this paper, we describe our effort to create a new corpus for the evaluation of detecting and linking so-called survey variables in social science publications (e.g., "Do you believe in Heaven?"). The task is to recognize survey variable mentions in a given text, disambiguate them, and link them to the corresponding variable within a knowledge base. Since there are generally hundreds of candidates to link to and due to the wide variety of forms they can take, this is a challenging task within NLP. The contribution of our work is the first gold standard corpus for the variable detection and linking task. We describe the annotation guidelines and the annotation process. The produced corpus is multilingual - German and English - and includes manually curated word and phrase alignments. Moreover, it includes text samples that could not be assigned to any variables, denoted as negative examples. Based on the new dataset, we conduct an evaluation of several state-of-the-art text classification and textual similarity methods. The annotated corpus is made available along with an open-source baseline system for variable mention identification and linking.... weniger

Thesaurusschlagwörter
Sozialwissenschaft; Publikation; Daten; Algorithmus; Computerlinguistik

Klassifikation
Informationswissenschaft
Literaturwissenschaft, Sprachwissenschaft, Linguistik

Freie Schlagwörter
text mining; semantic textual similarity; paraphrase detection; linking

Titel Sammelwerk, Herausgeber- oder Konferenzband
Proceedings of the 11th International Conference on Language Resources and Evaluation (LREC)

Konferenz
11. International Conference on Language Resources and Evaluation (LREC). Miyazaki (Japan), 2018

Sprache Dokument
Englisch

Publikationsjahr
2018

ISBN
979-10-95546-00-9

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung, Nicht kommerz., Keine Bearbeitung 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.