SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(193.2Kb)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-57722-7

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Mining Social Science Publications for Survey Variables

[conference paper]

Zielinski, Andrea
Mutschke, Peter

Corporate Editor
Association for Computational Linguistics (ACL)

Abstract

Research in Social Science is usually based on survey data where individual research questions relate to observable concepts (variables). However, due to a lack of standards for data citations a reliable identification of the variables used is often difficult. In this paper, we present a work-in-pro... view more

Research in Social Science is usually based on survey data where individual research questions relate to observable concepts (variables). However, due to a lack of standards for data citations a reliable identification of the variables used is often difficult. In this paper, we present a work-in-progress study that seeks to provide a solution to the variable detection task based on supervised machine learning algorithms, using a linguistic analysis pipeline to extract a rich feature set, including terminological concepts and similarity metric scores. Further, we present preliminary results on a small dataset that has been specifically designed for this task, yielding modest improvements over the baseline.... view less

Keywords
publication; technical literature; artificial intelligence; computational linguistics; survey; social science; concept; algorithm; periodical; construction of indicators; data capture

Classification
Science of Literature, Linguistics
Information Science

Free Keywords
OpenMinTed

Collection Title
Proceedings of the Second Workshop on NLP and Computational Social Science

Document language
English

Publication Year
2017

Page/Pages
p. 47-52

Status
Postprint; peer reviewed

Licence
Creative Commons - Attribution-NonCommercial-ShareAlike 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.