SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(externe Quelle)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://doi.org/10.18148/srm/2017.v11i3.6794

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

The Utility of GPS data in Assessing Interviewer Travel Behavior and Errors in Level-of-Effort Paradata

[Zeitschriftenartikel]

Wagner, James
Olson, Kristen
Edgar, Minako

Abstract

Surveys are a critical resource for social, economic, and health research. The ability to efficiently collect these data and develop accurate post-survey adjustments depends upon reliable data about effort required to recruit sampled units. Level-of-effort paradata are data generated by interviewers... mehr

Surveys are a critical resource for social, economic, and health research. The ability to efficiently collect these data and develop accurate post-survey adjustments depends upon reliable data about effort required to recruit sampled units. Level-of-effort paradata are data generated by interviewers during the process of collecting data in surveys. These data are often used as predictors in nonresponse adjustment models or to guide data collection efforts. However, recent research has found that these data may include measurement errors, which would lead to inaccurate decisions in the field or reduced effectiveness for adjustment purposes (Biemer, et al., 2013; West and Little, 2013). In order to assess whether errors occur in level-of-effort paradata, we introduce a new source of validation data for call records -- Global Positioning System (GPS) data generated by smartphones carried by interviewers. We examine the quality of the GPS data and then use the GPS data to characterize interviewer travel within sampled area segments. We also link the GPS data with the interviewer-reported call records in order to identify potential errors in the call records. Given the lack of a gold standard, we perform a sensitivity analysis under various assumptions to see how this would change our conclusions.... weniger

Thesaurusschlagwörter
Datengewinnung; Stichprobe; Umfrageforschung; Datenqualität

Klassifikation
Erhebungstechniken und Analysetechniken der Sozialwissenschaften

Freie Schlagwörter
Paradata; Measurement Error; In person surveys; call records

Sprache Dokument
Englisch

Publikationsjahr
2017

Seitenangabe
S. 219-233

Zeitschriftentitel
Survey Research Methods, 11 (2017) 3

Heftthema
Uses of Geographic Information Systems Tools in Survey Data Collection and Analysis

ISSN
1864-3361

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Deposit Licence - Keine Weiterverbreitung, keine Bearbeitung


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.