SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(externe Quelle)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://nbn-resolving.org/urn:nbn:de:101:1-2019072814350571345446

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

The spatial distribution of atmospheric conditions, severe storms Zab Basin in Iran: a case study of cut off low synoptic pattern

[Zeitschriftenartikel]

Ahmadi, Abdolla
Parvin, Nader
Asheri, Emam Ali
Mesgari, Ebrahim

Abstract

Atmospheric circulation patterns is the most important method of identification of environmental change that, it is useful For purposes such as weather forecasting, predict natural events (air pollution, floods, drought, etc). The aim of this study is to analyze the synoptic conditions of severe sto... mehr

Atmospheric circulation patterns is the most important method of identification of environmental change that, it is useful For purposes such as weather forecasting, predict natural events (air pollution, floods, drought, etc). The aim of this study is to analyze the synoptic conditions of severe storms is Zab basin. Daily data of wind speed over the period 1364/01/01 to 1390/12/29 of three synoptic stations was taken from the department of meteorology. Given the scale of temporal and spatial distribution, wind speed and comprehensiveness of the three threshold size and calculate the 90th percentile wind speed, 40 days pervasive and severe storms were selected. Sea level pressure data on the network with a size 5.2°*5.2° that was located on Cornell 0-80 degrees east longitude and 0-80 degrees northern latitude from the database NCEP/NCAR were extracted. Matrix was formed in the dimensions of 40*864 with storm was on the rows and elevation data middle levels of the atmosphere, was on the columns. A principal component analysis was performed on data matrix elevation and six factors were identified that about 97,4% of the Pressure elevation changes of 500hp level was explained. To identify synoptic patterns, cluster analysis integration "ward's" was performed on these components.The results showed that, Cut off low synoptic pattern of the upper atmosphere with an abundance of 47,5% in May and December had the highest frequency. Irregularities in the movement and position of the polar vortex caused the jet stream and storm paths meridional winds greater control and troughs are driven towards the low latitudes deeper. As a result, the pressure gradient and energy exchange at its maximum reached compression Isobaric lines and Strong winds in the catchment area level has been created. All patterns are identified for the winds mainly from the west and southwest.... weniger

Thesaurusschlagwörter
Cluster-Analyse; Iran; Umwelt; Klimawandel; Erdatmosphäre; Naturkatastrophe

Klassifikation
Ökologie und Umwelt

Freie Schlagwörter
Sturm; synoptische Muster

Sprache Dokument
Englisch

Publikationsjahr
2015

Seitenangabe
S. 39-45

Zeitschriftentitel
International Letters of Social and Humanistic Sciences (2015) 61

ISSN
2300-2697

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.