SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(externe Quelle)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://nbn-resolving.org/urn:nbn:de:101:1-2019072814342001313010

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Synoptic pattern of deep trough led to strong winds of Zab Basin in Iran

[Zeitschriftenartikel]

Parvin, Nader
Asheri, Emam Ali

Abstract

One of the most important natural disasters are storms that each year, causing financial losses and Johnny are Frequency. Sometimes damage to the extent that the economic system, social disrupts a country. The aim of this study is to analyze the synoptic conditions of severe storms is Zab basin. In ... mehr

One of the most important natural disasters are storms that each year, causing financial losses and Johnny are Frequency. Sometimes damage to the extent that the economic system, social disrupts a country. The aim of this study is to analyze the synoptic conditions of severe storms is Zab basin. In this study, given the scale of temporal and spatial distribution, wind speed and comprehensiveness of the three threshold size and calculate the 90th percentile wind speed, Forty days pervasive and severe storms were selected. Sea level pressure data and the elevation data of 500hp level from the database NCEP/NCAR were extracted. Matrix was formed that storm was on the rows and elevation data middle levels of the atmosphere, was on the columns. Then, principal components that explain the variation in height level pressure hp500 were identified. To identify synoptic patterns, cluster analysis integration "ward's" was performed on these components.The results showed that five synoptic pattern of atmospheric middle level, in the form of three major causes of severe storms in the Zab River Basin: Cut off low pattern, Shallow trough pattern of long wave and deep trough pattern of short wave. The most frequent traffic synoptic pattern of a synoptic pattern of middle levels and 60% of the patterns assigned to itself, causing severe storms in the Zab River Basin. Irregularities in the movement and position of the polar vortex caused the jet stream and storm paths meridian winds greater control and troughs are driven towards the low latitudes deeper. Because of the special arrangement of relatively strong and contrasting surface synoptic, the pressure gradient and energy exchange at its maximum reached compression Isobaric lines and as a result, Strong winds in the catchment area level has been created.... weniger

Thesaurusschlagwörter
Cluster-Analyse; Iran; Ursache; Naturkatastrophe

Klassifikation
Ökologie und Umwelt

Freie Schlagwörter
Sturm; synoptische Muster

Sprache Dokument
Englisch

Publikationsjahr
2015

Seitenangabe
S. 46-52

Zeitschriftentitel
International Letters of Social and Humanistic Sciences (2015) 61

ISSN
2300-2697

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.