SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(1.276 MB)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-51575-8

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Changes in the population distribution and transport network of Saint Petersburg

Изменения в пространственном распределении населения и дорожной сети Санкт-Петербурга
[Zeitschriftenartikel]

Xiaoling, Li
Anokhin, Anatolii A.
Shendrik, Alexander V.
Chunliang, Xiu

Abstract

The authors explores the interdependence between demographic changes and transport network centrality, using Saint Petersburg as an example. The article describes the demographic data for the period 2002-2015 and the transportation network data of 2006. The authors employ several methods of demograp... mehr

The authors explores the interdependence between demographic changes and transport network centrality, using Saint Petersburg as an example. The article describes the demographic data for the period 2002-2015 and the transportation network data of 2006. The authors employ several methods of demographic research; they identified the centre of gravity of the population, produce the standard deviational ellipsis and use the kernel density estimation. The street network centrality of Saint Petersburg was analyzed using the Multiple Centrality Assessment Model (MCA) and the Urban Network Analysis Tool for ArcGIS. The analysis of the population distribution in Saint Petersburg shows that each area of the city has seen their population grow over the last thirteen years. However, it is the population of suburban areas that increased the most. The core area of the city has the tendency of outward diffusion, and the population gravity centre has been moving northwards. Spatial characteristics of the population growth, changes in the population gravity centre, the standard deviational ellipse and characteristics of the street network centrality show that Saint Petersburg is at the final stage of urbanization and its development pattern is similar to that of other major cities.... weniger

Thesaurusschlagwörter
Bevölkerung; regionale Verteilung; Stadt; Russland; Bevölkerungsdichte; Straßennetz; Stadtgebiet; Verkehrsnetz

Klassifikation
Raumplanung und Regionalforschung
Wirtschafts- und Sozialgeographie
Verkehrssoziologie
Siedlungssoziologie, Stadtsoziologie

Freie Schlagwörter
St. Petersburg

Sprache Dokument
Englisch

Publikationsjahr
2016

Seitenangabe
S. 39-60

Zeitschriftentitel
Baltic Region (2016) 4

DOI
https://doi.org/10.5922/2079-8555-2016-4-4

ISSN
2079-8555

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Digital Peer Publishing Licence - Freie DIPP-Lizenz


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.