SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(external source)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://doi.org/10.18148/srm/2016.v10i3.6387

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Longitudinal wealth data and multiple imputation - an evaluation study

[journal article]

Westermeier, Christian
Grabka, Markus M.

Abstract

"Statistical analysis in surveys is generally facing missing data. In longitudinal studies for some missing values there might be past or future data points available. The question arises how to successfully transform this advantage into improved imputation strategies. In a simulation study the auth... view more

"Statistical analysis in surveys is generally facing missing data. In longitudinal studies for some missing values there might be past or future data points available. The question arises how to successfully transform this advantage into improved imputation strategies. In a simulation study the authors compare six combinations of cross-sectional and longitudinal imputation strategies for German wealth panel data. The authors create simulation data sets by blanking out observed data points: they induce item non response by a missing at random (MAR) and two differential non-response (DNR) mechanisms. We test the performance of multiple imputation using chained equations (MICE), an imputation procedure for panel data known as the row-and-column method and a regression prediction with correction for sample selection. The regression and MICE approaches serve as fallback methods, when only cross-sectional data is available. The row-and-column method performs surprisingly well considering the cross-sectional evaluation criteria. For trend estimates and the measurement of inequality, combining MICE with the row-and-column technique regularly improves the results based on a catalogue of six evaluation criteria including three separate inequality indices. As for wealth mobility, two additional criteria show that a model based approach such as MICE might be the preferable choice. Overall the results show that if the variables, which ought to be imputed, are highly skewed, the row-and-column technique should not be dismissed beforehand." (author's abstract)... view less

Keywords
longitudinal study; panel; SOEP; data capture; simulation; response behavior; statistical analysis; regression; survey research

Classification
Methods and Techniques of Data Collection and Data Analysis, Statistical Methods, Computer Methods

Document language
Spanish

Publication Year
2016

Page/Pages
p. 237-252

Journal
Survey Research Methods, 10 (2016) 3

ISSN
1864-3361

Status
Published Version; peer reviewed

Licence
Deposit Licence - No Redistribution, No Modifications


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.