SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(externe Quelle)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://doi.org/10.12758/mda.2016.007

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Measuring the coverage bias in landline telephone surveys by comparison of Swiss registry data with commercially available telephone number databases

[Zeitschriftenartikel]

Klug, Stefan
Arn, Birgit

Abstract

"Coverage of the population within the sampling frame is a very important quality characteristic of a study. However, a metrical evaluation of the coverage bias to approach the question of representativeness is usually not possible. Switzerland stands out in that the federal statistical office (SFS... mehr

"Coverage of the population within the sampling frame is a very important quality characteristic of a study. However, a metrical evaluation of the coverage bias to approach the question of representativeness is usually not possible. Switzerland stands out in that the federal statistical office (SFSO) has legal access to population registers (person universe) and a full list of landline telephone numbers (phone number universe). However, these data are not available for research institutes, which must rely on commercially available number collections or RDD sampling frames. This paper wants to quantify the coverage bias of such alternative sampling frames by metric calculation of their congruence with the SFSO universes. The analysis shows that 85.0% of private phone numbers and 88.9% of the resident population of Switzerland that can be reached via landline by the SFSO definition (non-ALTELs) are included in our exemplarily analyzed commercially available phone number collection. The highest coverage bias is present in the 20-39 age group. The RDD frame covers 97.8% of private phone numbers and 99.8% of non-ALTEL persons. Hence, both available alternative sampling frames are useful for representative studies. Finally, the potential of use of the Swiss coverage results as benchmarks for other countries is discussed." (author's abstract)... weniger

Thesaurusschlagwörter
Datengewinnung; CATI; Datenqualität; Mobiltelefon; Stichprobe; Telefoninterview; Antwortverhalten; Befragung; amtliche Statistik; Bevölkerungsstatistik; Repräsentativität; Schweiz; Umfrageforschung

Klassifikation
Erhebungstechniken und Analysetechniken der Sozialwissenschaften

Methode
Methodenentwicklung; Grundlagenforschung

Freie Schlagwörter
coverage bias; RDD

Sprache Dokument
Englisch

Publikationsjahr
2016

Seitenangabe
S. 167-194

Zeitschriftentitel
Methods, data, analyses : a journal for quantitative methods and survey methodology (mda), 10 (2016) 2

ISSN
2190-4936

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.