SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(502.6Kb)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://doi.org/10.17174/dcr.v2.14

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Utilisation of Audio Mining Technologies for Researching Public Communication on Multimedia Platforms

Anwendung von Audio-Mining-Technologien zur Untersuchung von öffentlicher Kommunikation auf Multimedia-Plattformen
[collection article]


This document is a part of the following document:
Digitale Methoden in der Kommunikationswissenschaft

Eble, Michael
Stein, Daniel

Abstract

The number and volume of spoken language corpora which are generally available for research purposes increase significantly. That is due to the wide adoption of audio-visual communication on news websites and social web platforms. The respective messages that are published by professional and indivi... view more

The number and volume of spoken language corpora which are generally available for research purposes increase significantly. That is due to the wide adoption of audio-visual communication on news websites and social web platforms. The respective messages that are published by professional and individual communicators are subject to online content analysis. To date, such analyses strongly rely on manually operated processes which come along with a huge effort for transcribing spoken language corpora into textual content. Hence, challenges like the ever increasing volume, velocity and variety of multimedia content need to be faced. Audio Mining technologies are capable of reducing the effort for turning speech into text significantly. Using these technologies via application programming interfaces (APIs), it is demonstrated how a hybrid approach enables researchers to reduce the time that is needed for analysing news content by an order of magnitude.... view less


Korpora gesprochener Sprache, die für Forschungszwecke genutzt werden können, wachsen kontinuierlich in Anzahl und Umfang. Durch die zunehmende Erstellung und Nutzung von audio-visuellen Inhalten durch publizistische Online-Medien und auf Social-Web-Plattformen wachsen diese weiter an. Sie sind Gege... view more

Korpora gesprochener Sprache, die für Forschungszwecke genutzt werden können, wachsen kontinuierlich in Anzahl und Umfang. Durch die zunehmende Erstellung und Nutzung von audio-visuellen Inhalten durch publizistische Online-Medien und auf Social-Web-Plattformen wachsen diese weiter an. Sie sind Gegenstand von Online-Inhaltsanalysen über öffentliche Kommunikation im Internet. Gegenwärtig ist dazu vielfach ein manuelles Transkribieren der gesprochenen Medieninhalte erforderlich, um diese für die anschließende Codierung zugänglich zu machen. Dieser Arbeitsschritt kann durch automatische Verfahren der Sprachanalyse (Audio Mining) unterstützt werden. Der Beitrag zeigt anhand der methodischen Herausforderungen eines spezifischen Anwendungsszenarios, wie der Aufwand für Online-Inhaltsanalysen durch die Kombination von automatischen und manuellen Analyseverfahren deutlich reduziert werden kann.... view less

Keywords
public communications; online media; multimedia; spoken language; content analysis; data processing; neural network

Classification
Methods and Techniques of Data Collection and Data Analysis, Statistical Methods, Computer Methods
Basic Research, General Concepts and History of the Science of Communication

Free Keywords
Multimedia-Analyse; Audio Mining; API

Collection Title
Digitale Methoden in der Kommunikationswissenschaft

Editor
Maireder, Axel; Ausserhofer, Julian; Schumann, Christina; Taddicken, Monika

Document language
English

Publication Year
2015

City
Berlin

Page/Pages
p. 329-345

Series
Digital Communication Research, 2

ISSN
2198-7610

ISBN
978-3-945681-02-2

Status
Primary Publication; peer reviewed

Licence
Creative Commons - Attribution


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.