SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(885.0 KB)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-384875

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

The case for spatially-sensitive data: how data structures affect spatial measurement and substantive theory

Raumsensible Daten: wie Datenstrukturen räumlich-geographisches Messen substantielle Theorie beeinflussen
[Zeitschriftenartikel]

Chan-Tack, Anjanette M.

Abstract

Innovations in GIS and spatial statistics offer exciting opportunities to examine novel questions and to revisit established theory. Realizing this promise requires investment in spatially-sensitive data. Though convenient, widely-used administrative datasets are often spatially insensitive. They li... mehr

Innovations in GIS and spatial statistics offer exciting opportunities to examine novel questions and to revisit established theory. Realizing this promise requires investment in spatially-sensitive data. Though convenient, widely-used administrative datasets are often spatially insensitive. They limit our ability to conceptualize and measure spatial relationships, leading to problems with ecological validity and the MAUP – with profound implications for substantive theory. I dramatize the stakes using the case of supermarket red-lining in 1970 Chicago. I compare the analytical value of a popular, spatially insensitive administrative dataset with that of a custom-built, spatially sensitive alternative. I show how the former constrains analysis to a single count measure and aspatial regression, while the latter’s point data support multiple measures and spatially-sensitive regression procedures; leading to starkly divergent results. In establishing the powerful impact that spatial measures can exert on our theoretical conclusions, I highlight the perils of relying on convenient, but insensitive datasets. Concomitantly, I demonstrate why investing in spatially sensitive data is essential for advancing sound knowledge of a broad array of historical and contemporary spatial phenomena.... weniger

Thesaurusschlagwörter
Nachbarschaft; Datengewinnung; regionale Faktoren; Raum; Stadtsoziologie; Stadtforschung; Einzelhandel; Forschungsansatz; Statistik; Analyse

Klassifikation
Wirtschafts- und Sozialgeographie
Erhebungstechniken und Analysetechniken der Sozialwissenschaften

Methode
Methodenentwicklung; Grundlagenforschung

Freie Schlagwörter
spatial regression; spatially-sensitive data; spatial measurement; ecological validity; Modifiable Areal Unit Problem (MAUP); retail red-lining; supermarket access; neighborhood effects

Sprache Dokument
Englisch

Publikationsjahr
2014

Seitenangabe
S. 315-346

Zeitschriftentitel
Historical Social Research, 39 (2014) 2

Heftthema
Spatial analysis

DOI
https://doi.org/10.12759/hsr.39.2014.2.315-346

ISSN
0172-6404

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.