SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(1.934 MB)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-384862

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Measuring spatial aspects of variability: comparing spatial autocorrelation with regional decomposition in international unemployment research

Das Messen von räumlicher Variabilität: der Vergleich von räumlicher Autokorrelation und regionaler Dekomposition in der internationalen Forschung zur Arbeitslosigkeit
[Zeitschriftenartikel]

Nosek, Vojtech
Netrdova, Pavlina

Abstract

This paper focuses on spatial aspects of variability and specifically on the relationship between regional decomposition and spatial autocorrelation. These characteristics are often supposed to be interconnected, but the subject has not yet been studied in sufficient detail and spatial methods are o... mehr

This paper focuses on spatial aspects of variability and specifically on the relationship between regional decomposition and spatial autocorrelation. These characteristics are often supposed to be interconnected, but the subject has not yet been studied in sufficient detail and spatial methods are often neglected in regional analysis. We start with a brief discussion of a methodology suitable for identifying and quantifying spatial aspects of variability. The key part of the paper focuses on methodological reflections on measuring spatial aspects of variability and the advantages and disadvantages of our chosen methods. We use the Theil index, which is decomposable without residuum, to assess the relative importance of the regional organization of our studied phenomena. To measure spatial autocorrelation, which enables us to quantify the level of spatial concentration of the studied phenomena and reveal spatial clustering, we use Moran’s I (global scale) and LISA (local scale). We explain in depth the properties of these methods, advantages/disadvantages, behaviour in different situations and the potential for them to be combined and used jointly. These methodological findings help to better understand and interpret the results of the subsequent empirical research. We apply the methods in international unemployment research with highly detailed data from Austria, Czechia, Germany, and Poland. Specifically, we are interested in the importance of socio-spatial (regional) organization in relation to unemployment rates, and we present noteworthy results concerning the spatial differentiation of unemployment in the Central European region.... weniger

Thesaurusschlagwörter
Korrelation; statistische Methode; Arbeitslosigkeit; Variabilität; Mitteleuropa; regionaler Unterschied; Messung

Klassifikation
Forschungsarten der Sozialforschung
Arbeitsmarktforschung

Methode
empirisch; empirisch-quantitativ

Freie Schlagwörter
regional decomposition; spatial autocorrelation; international research; Moran's I; LISA; Theil index

Sprache Dokument
Englisch

Publikationsjahr
2014

Seitenangabe
S. 292-314

Zeitschriftentitel
Historical Social Research, 39 (2014) 2

Heftthema
Spatial analysis

DOI
https://doi.org/10.12759/hsr.39.2014.2.292-314

ISSN
0172-6404

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.