SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(1003. KB)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-339398

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Creating an Annotated Corpus for Sentiment Analysis of German Product Reviews

[Forschungsbericht]

Boland, Katarina
Wira-Alam, Andias
Messerschmidt, Reinhard

Körperschaftlicher Herausgeber
GESIS - Leibniz-Institut für Sozialwissenschaften

Abstract

The availability of annotated data is an important prerequisite for the development of machine learning algorithms for sentiment analysis. However, as manually labeling large datasets is time-consuming and expensive, few datasets are available and most of them represent a small sample of a very na... mehr

The availability of annotated data is an important prerequisite for the development of machine learning algorithms for sentiment analysis. However, as manually labeling large datasets is time-consuming and expensive, few datasets are available and most of them represent a small sample of a very narrow domain, e.g. movie reviews or reviews of a certain product type. Additionally, many annotated datasets are available for English texts only. However, the influence of different characteristics of the input dataset on the performance of algorithms for sentiment analysis remains unclear if only training data from one specific domain is available or if specific domains are mixed in the test corpus. We therefore introduce a new dataset for German product reviews of various product types and investigate whether even small variances in this specific domain (different product types) already exhibit different characteristics, e.g. with regard to the difficulty of sentiment annotation. The annotation of this corpus lays the basis for future enhanced annotations of similar corpora and for the extension of our annotations to corpora of inherently different domains. These will then serve to investigate the influence of different corpus characteristics on different algorithms for sentiment analysis and as a basis to apply machine learning methods for sentence-wise sentiment analysis for German texts.... weniger

Klassifikation
Naturwissenschaften, Technik(wissenschaften), angewandte Wissenschaften

Sprache Dokument
Englisch

Publikationsjahr
2013

Erscheinungsort
Mannheim

Seitenangabe
16 S.

Schriftenreihe
GESIS-Technical Reports, 2013/05

ISSN
1868-9051

Status
Veröffentlichungsversion; begutachtet

Lizenz
Deposit Licence - Keine Weiterverbreitung, keine Bearbeitung


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.