SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(4.708Mb)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-33008

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Modelling the long wave-phenomena

Die Modellierung des Lang-Wellen-Phänomens
[journal article]

Metz, Rainer
Stier, Winfried

Abstract

Der vorliegende Beitrag diskutiert einige statistische und mathematische Probleme der 'langen Wellen', d.h. dem Phänomen regelmäßiger, sich in langen Zeiträumen wiederholender Abläufe. Gezeigt wird, wie Informationen über 'lange Wellen' aus Zeitreihen und einem Filter-Design abgeleitet werden können... view more

Der vorliegende Beitrag diskutiert einige statistische und mathematische Probleme der 'langen Wellen', d.h. dem Phänomen regelmäßiger, sich in langen Zeiträumen wiederholender Abläufe. Gezeigt wird, wie Informationen über 'lange Wellen' aus Zeitreihen und einem Filter-Design abgeleitet werden können. Dieser Ansatz steht im engen Zusammenhang mit der Methodologie der Zeitreihenanalyse. Das vorgestellte parametrische Modell beansprucht prognostische Relevanz (zumindest für die im Text benutzten Daten). (pmb)... view less


'In this paper, by 'modelling' we mean the identification and estimation of time series models and not the development and evaluation of economic-theoretical models. Whereas the latter mentioned approach aims at analysing the probable causes of wave-phenomena, the time-series approach is a purely em... view more

'In this paper, by 'modelling' we mean the identification and estimation of time series models and not the development and evaluation of economic-theoretical models. Whereas the latter mentioned approach aims at analysing the probable causes of wave-phenomena, the time-series approach is a purely empirical one. If it should prove to be possible to identify timeseries models, we can hope that they will possess predictive power and we can further hope that this will help us in finding dependencies between different wave-series. This would make it possible to conduct multivariate analyses of wave-phenomena which have to the best of our knowledge not been performed yet. However, in this paper we restrict ourselves to univariate modelling for two reasons: in the first place, we think that sufficient experience must be accumulated in univariate modelling before multivariate modelling can be done properly, and secondly, even univariate modelling of long wave-phenomena by means of modern time series analysis is a topic not discussed up to now (as far as we know).' (author's abstract)... view less

Keywords
historical social research; methodology; model construction; analysis; time series; empirical social research

Classification
Methods and Techniques of Data Collection and Data Analysis, Statistical Methods, Computer Methods

Method
basic research

Document language
English

Publication Year
1992

Page/Pages
p. 43-62

Journal
Historical Social Research, 17 (1992) 3

DOI
https://doi.org/10.12759/hsr.17.1992.3.43-62

ISSN
0172-6404

Status
Published Version; peer reviewed

Licence
Creative Commons - Attribution 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.