SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(353.5Kb)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-327153

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

SPSS TwoStep Cluster - a first evaluation

SPSS TwoStep Cluster - eine erste Evaluation
[working paper]

Bacher, Johann
Wenzig, Knut
Vogler, Melanie

Corporate Editor
Universität Erlangen-Nürnberg, Wirtschafts- und Sozialwissenschaftliche Fakultät, Sozialwissenschaftliches Institut Lehrstuhl für Soziologie

Abstract

"SPSS 11.5 and later releases offer a two step clustering method. According to the authors' knowledge the procedure has not been used in the social sciences until now. This situation is surprising: The widely used clustering algorithms, k-means clustering and agglomerative hierarchical techniques, s... view more

"SPSS 11.5 and later releases offer a two step clustering method. According to the authors' knowledge the procedure has not been used in the social sciences until now. This situation is surprising: The widely used clustering algorithms, k-means clustering and agglomerative hierarchical techniques, suffer from well known problems, whereas SPSS TwoStep clustering promises to solve at least some of these problems. In particular, mixed type attributes can be handled and the number of clusters is automatically determined. These properties are promising. Therefore, SPSS TwoStep clustering is evaluated in this paper by a simulation study. Summarizing the results of the simulations, SPSS TwoStep performs well if all variables are continuous. The results are less satisfactory, if the variables are of mixed type. One reason for this unsatisfactory finding is the fact that differences in categorical variables are given a higher weight than differences in continuous variables. Different combinations of the categorical variables can dominate the results. In addition, SPSS TwoStep clustering is not able to detect correctly models with no cluster solutions. Latent class models show a better performance. They are able to detect models with no underlying cluster structure, they result more frequently in correct decisions and in less biased estimators." (author's abstract)... view less


"SPSS enthält seit Version 11.5 einen Algorithmus zur TwoStep-Clusteranalyse. Dieses Verfahren wurde in den Sozialwissenschaften unseres Wissens nach bisher nicht angewendet. Das ist eigentlich überraschend: Die weit verbreiteten Verfahren der Clusteranalyse, wie k-means und agglomerative hierarchis... view more

"SPSS enthält seit Version 11.5 einen Algorithmus zur TwoStep-Clusteranalyse. Dieses Verfahren wurde in den Sozialwissenschaften unseres Wissens nach bisher nicht angewendet. Das ist eigentlich überraschend: Die weit verbreiteten Verfahren der Clusteranalyse, wie k-means und agglomerative hierarchische Verfahren, haben bekannte Schwächen, für die SPSS TwoStep Clustering wenigstens teilweise eine Lösung verspricht: Insbesondere sollen gemischt-skalierte Variablen erlaubt sein und die Anzahl der Cluster automatisch bestimmt werden. Aus diesem Grund wird der neue Algorithmus in diesem Papier mit einer Simulationsstudie evaluiert. SPSS TwoStep ist erfolgreich, wenn die Variabeln quantitativ sind. Für gemischt-skalierte Variablen sind die Ergebnisse jedoch weniger zufrieden stellend. Ein Grund hierfür ist, dass nominalen Variabeln in der Analyse höher gewichtet werden und so verschiedene Variablen-Kombinationen die Ergebnisse dominieren können. Weiterhin findet SPSS TwoStep Cluster, selbst wenn den Daten keine Clusterstruktur zugrunde liegt. Modelle mit latenten Klassen führen hier zu besseren Ergebnissen. Sie erkennen Situationen, in denen keine Clusterstruktur vorliegt, treffen häufiger die richtige Clusterzahl und führen zu weniger verzerrten Schätzern." (Autorenreferat)... view less

Keywords
SPSS; scaling; data; cluster analysis; analysis; software

Classification
Methods and Techniques of Data Collection and Data Analysis, Statistical Methods, Computer Methods

Method
development of methods; basic research

Document language
English

Publication Year
2004

Edition
2., corr. ed.

City
Nürnberg

Page/Pages
23 p.

Series
Arbeits- und Diskussionspapiere / Universität Erlangen-Nürnberg, Sozialwissenschaftliches Institut, Lehrstuhl für Soziologie, 2004-2

Status
Published Version; reviewed

Licence
Deposit Licence - No Redistribution, No Modifications


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.