SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(414.9 KB)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-320989

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

A new approach for disclosure control in the IAB Establishment Panel: multiple imputation for a better data access

Ein neues Verfahren für die Veröffentlichungskontrolle im IAB-Betriebspanel: multiple Imputation für einen besseren Datenzugang
[Arbeitspapier]

Drechsler, Jörg
Dundler, Agnes
Bender, Stefan
Rässler, Susanne
Zwick, Thomas

Körperschaftlicher Herausgeber
Institut für Arbeitsmarkt- und Berufsforschung der Bundesagentur für Arbeit (IAB)

Abstract

Öffentliche Stellen, die Datensätze produzieren, müssen mit dem Dilemma umgehen, einerseits die Vertraulichkeit der personenbezogenen Daten zu schützen, andererseits für die Forschung hinreichend detaillierte Datensätze zur Verfügung zu stellen. Aus diesem Grund werden etliche Methoden der Offenlegu... mehr

Öffentliche Stellen, die Datensätze produzieren, müssen mit dem Dilemma umgehen, einerseits die Vertraulichkeit der personenbezogenen Daten zu schützen, andererseits für die Forschung hinreichend detaillierte Datensätze zur Verfügung zu stellen. Aus diesem Grund werden etliche Methoden der Offenlegungskontrolle in der Literatur diskutiert. Der Beitrag stellt zwei Ansätze vor, die auf multipler Imputation basieren, und die auf das IAB-Betriebspanel angewandt werden können. Beim ersten Ansatz, der auf Rubin (1993) zurückgeht, wird ein vollständig synthetischer Datensatz generiert, während beim zweiten Ansatz nur Werte für ausgewählte Variablen mit hohem Offenlegungsrisiko imputiert werden. Beide Ansätze werden auf eine Menge Variablen aus der Welle des IAB-Betriebspanels aus dem Jahr 1997 angewandt. Die Qualität der Ansätze wird bewertet, indem die Analyseergebnisse von Zwick (2005), die auf den Originaldaten basieren, mit den Ergebnissen derselben Analyse nach der Imputation verglichen werden. (IAB)... weniger


"For micro-datasets considered for release as scientific or public use files, statistical agencies have to face the dilemma of guaranteeing the confidentiality of survey respondents on the one hand and offering sufficiently detailed data on the other hand. For that reason a variety of methods to gua... mehr

"For micro-datasets considered for release as scientific or public use files, statistical agencies have to face the dilemma of guaranteeing the confidentiality of survey respondents on the one hand and offering sufficiently detailed data on the other hand. For that reason a variety of methods to guarantee disclosure control is discussed in the literature. In this paper, we present an application of Rubin's (1993) idea to generate synthetic datasets from existing confidential survey data for public release. We use a set of variables from the 1997 wave of the German IAB Establishment Panel and evaluate the quality of the approach by comparing results from an analysis by Zwick (2005) with the original data with the results we achieve for the same analysis run on the dataset after the imputation procedure. The comparison shows that valid inferences can be obtained using the synthetic datasets in this context, while confidentiality is guaranteed for the survey participants." (author's abstract)... weniger

Thesaurusschlagwörter
Datensicherheit; Datenschutz; Datenaufbereitung; Anonymität

Klassifikation
Arbeitsmarktforschung
Erhebungstechniken und Analysetechniken der Sozialwissenschaften

Methode
Grundlagenforschung; Methodenentwicklung

Sprache Dokument
Englisch

Publikationsjahr
2007

Erscheinungsort
Nürnberg

Seitenangabe
31 S.

Schriftenreihe
IAB Discussion Paper: Beiträge zum wissenschaftlichen Dialog aus dem Institut für Arbeitsmarkt- und Berufsforschung, 11/2007

Status
Veröffentlichungsversion; begutachtet

Lizenz
Deposit Licence - Keine Weiterverbreitung, keine Bearbeitung

DatenlieferantDieser Metadatensatz wurde vom Sondersammelgebiet Sozialwissenschaften (USB Köln) erstellt.


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.