SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(1.945 MB)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-261755

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Adaptive estimation of the dynamics of a discrete time stochastic volatility model

[Zeitschriftenartikel]

Comte, F.
Lacour, C.
Rozenholc, Y.

Abstract

This paper is concerned with the discrete time stochastic volatility model Yi=exp(Xi/2)ηi, Xi+1=b(Xi)+σ(Xi)ξi+1, where only (Yi) is observed. The model is re-written as a particular hidden model: Zi=Xi+εi, Xi+1=b(Xi)+σ(Xi)ξi+1, where (ξi) and (εi) are independent sequences of i.i.d. noise. Moreover,... mehr

This paper is concerned with the discrete time stochastic volatility model Yi=exp(Xi/2)ηi, Xi+1=b(Xi)+σ(Xi)ξi+1, where only (Yi) is observed. The model is re-written as a particular hidden model: Zi=Xi+εi, Xi+1=b(Xi)+σ(Xi)ξi+1, where (ξi) and (εi) are independent sequences of i.i.d. noise. Moreover, the sequences (Xi) and (εi) are independent and the distribution of ε is known. Then, our aim is to estimate the functions b and σ2 when only observations Z1,…,Zn are available. We propose to estimate bf and (b2+σ2)f and study the integrated mean square error of projection estimators of these functions on automatically selected projection spaces. By ratio strategy, estimators of b and σ2 are then deduced. The mean square risk of the resulting estimators are studied and their rates are discussed. Lastly, simulation experiments are provided: constants in the penalty functions defining the estimators are calibrated and the quality of the estimators is checked on several examples.... weniger

Klassifikation
Wirtschaftsstatistik, Ökonometrie, Wirtschaftsinformatik

Freie Schlagwörter
C13; C14; C22; Adaptive Estimation; Autoregression; Deconvolution; Heteroscedastic; Hidden Markov Model; Nonparametric Projection Estimator

Sprache Dokument
Englisch

Publikationsjahr
2009

Seitenangabe
S. 59-73

Zeitschriftentitel
Journal of Econometrics, 154 (2009) 1

DOI
https://doi.org/10.1016/j.jeconom.2009.07.001

Status
Postprint; begutachtet (peer reviewed)

Lizenz
PEER Licence Agreement (applicable only to documents from PEER project)


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.