SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(666.2 KB)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-221168

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Least Squares Importance Sampling for Monte Carlo Security Pricing

[Zeitschriftenartikel]

Capriotti, Luca

Abstract

We describe a simple Importance Sampling strategy for Monte Carlo simulations based on a least squares optimization procedure. With several numerical examples, we show that such Least Squares Importance Sampling (LSIS) provides efficiency gains comparable to the state of the art techniques, for prob... mehr

We describe a simple Importance Sampling strategy for Monte Carlo simulations based on a least squares optimization procedure. With several numerical examples, we show that such Least Squares Importance Sampling (LSIS) provides efficiency gains comparable to the state of the art techniques, for problems that can be formulated in terms of the determination of the optimal mean of a multivariate Gaussian distribution. In addition, LSIS can be naturally applied to more general importance sampling densities and is particularly effective when the ability to adjust higher moments of the sampling distribution, or to deal with non-Gaussian or multi-modal densities, is critical to achieve variance reductions.... weniger

Klassifikation
Wirtschaftsstatistik, Ökonometrie, Wirtschaftsinformatik
Allgemeines, spezielle Theorien und "Schulen", Methoden, Entwicklung und Geschichte der Wirtschaftswissenschaften

Methode
Theorieanwendung

Freie Schlagwörter
Monte Carlo methods; Derivatives pricing; Financial derivatives; Financial engineering

Sprache Dokument
Englisch

Publikationsjahr
2008

Seitenangabe
S. 485-497

Zeitschriftentitel
Quantitative Finance, 8 (2008) 5

DOI
https://doi.org/10.1080/14697680701762435

Status
Postprint; begutachtet (peer reviewed)

Lizenz
PEER Licence Agreement (applicable only to documents from PEER project)


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.