SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(5.129 MB)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-221153

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Random matrix ensembles of time-lagged correlation matrices: derivation of eigenvalue spectra and analysis of financial time-series

[Zeitschriftenartikel]

Thurner, Stefan
Biely, Christoly

Abstract

We derive the exact form of the eigenvalue spectra of correlation matrices derived from a set of time-shifted, finite Brownian random walks (time-series). These matrices can be seen as real, asymmetric random matrices where the time-shift superimposes some structure. We demonstrate that for larg... mehr

We derive the exact form of the eigenvalue spectra of correlation matrices derived from a set of time-shifted, finite Brownian random walks (time-series). These matrices can be seen as real, asymmetric random matrices where the time-shift superimposes some structure. We demonstrate that for large matrices the associated eigenvalue spectrum is circular symmetric in the complex plane. This fact allows us to exactly compute the eigenvalue density via an inverse Abel-transform of the density of the {\it symmetrized} problem. We demonstrate the validity of this approach numerically. Theoretical findings are next compared with eigenvalue densities obtained from actual high frequency (5 min) data of the S\&P500 and discuss the observed deviations. We identify various non-trivial, non-random patterns and find asymmetric dependencies associated with eigenvalues departing strongly from the Gaussian prediction in the imaginary part. For the same time-series, with the market contribution removed, we observe strong clustering of stocks, into causal sectors. We finally comment on the stability of the observed patterns.... weniger

Klassifikation
Wirtschaftsstatistik, Ökonometrie, Wirtschaftsinformatik
Allgemeines, spezielle Theorien und "Schulen", Methoden, Entwicklung und Geschichte der Wirtschaftswissenschaften

Methode
Theorieanwendung

Freie Schlagwörter
Stochastic analysis; Adaptive behaviour; Agent based modelling; Asset pricing; Complexity in economics; Financial time series

Sprache Dokument
Englisch

Publikationsjahr
2008

Seitenangabe
S. 705-722

Zeitschriftentitel
Quantitative Finance, 8 (2008) 7

DOI
https://doi.org/10.1080/14697680701691477

Status
Postprint; begutachtet (peer reviewed)

Lizenz
PEER Licence Agreement (applicable only to documents from PEER project)


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.