SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(1.049 MB)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-221111

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Local Likelihood Estimators in a Regression Model for Stock Returns

[Zeitschriftenartikel]

Jönck, Uwe Christian

Abstract

We consider a non-stationary regression type model for stock returns in which the innovations are described by four-parameter distributions and the parameters are assumed to be smooth, deterministic functions of time. Incorporating also normal distributions for modelling the innovations, our model i... mehr

We consider a non-stationary regression type model for stock returns in which the innovations are described by four-parameter distributions and the parameters are assumed to be smooth, deterministic functions of time. Incorporating also normal distributions for modelling the innovations, our model is capable of adapting to light-tailed innovations as well as to heavy-tailed ones. Thus, it turns out to be a very flexible approach. Both, for the fitting of the model and for forecasting the distributions of future returns, we use local likelihood methods for estimation of the parameters. We apply our model to the S&P 500 return series, observed over a period of twelve years. We show that it fits these data quite well and that it yields reasonable one-day-ahead forecasts.... weniger

Klassifikation
Wirtschaftsstatistik, Ökonometrie, Wirtschaftsinformatik
Allgemeines, spezielle Theorien und "Schulen", Methoden, Entwicklung und Geschichte der Wirtschaftswissenschaften

Methode
Theorieanwendung

Freie Schlagwörter
Financial time series; Statistics; Financial econometrics; Financial modelling

Sprache Dokument
Englisch

Publikationsjahr
2008

Seitenangabe
S. 619-635

Zeitschriftentitel
Quantitative Finance, 8 (2008) 6

DOI
https://doi.org/10.1080/14697680701656181

Status
Postprint; begutachtet (peer reviewed)

Lizenz
PEER Licence Agreement (applicable only to documents from PEER project)


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.