SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(330.8 KB)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-220959

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Solvable Local and Stochastic Volatility Models: Supersymmetric Methods in Option Pricing

[Zeitschriftenartikel]

Henry-Labordere, Pierre

Abstract

In this paper we provide an extensive classification of one and two dimensional diffusion processes which admit an exact solution to the Kolmogorov (and hence Black-Scholes) equation (in terms of hypergeometric functions). By identifying the one-dimensional solvable processes with the class of {\it ... mehr

In this paper we provide an extensive classification of one and two dimensional diffusion processes which admit an exact solution to the Kolmogorov (and hence Black-Scholes) equation (in terms of hypergeometric functions). By identifying the one-dimensional solvable processes with the class of {\it integrable superpotentials} introduced recently in supersymmetric quantum mechanics, we obtain new analytical solutions. In particular, by applying {\it supersymmetric transformations} on a known solvable diffusion process (such as the Natanzon process for which the solution is given by a hypergeometric function), we obtain a hierarchy of new solutions. These solutions are given by a sum of hypergeometric functions, generalizing the results obtained in the paper "Black-Scholes Goes Hypergeometric" \cite{alb}. For two-dimensional processes, more precisely stochastic volatility models, the classification is achieved for a specific class called gauge-free models including the Heston model, the $3/2$-model and the geometric Brownian model. We then present a new exact stochastic volatility model belonging to this class.... weniger

Klassifikation
Wirtschaftsstatistik, Ökonometrie, Wirtschaftsinformatik
Allgemeines, spezielle Theorien und "Schulen", Methoden, Entwicklung und Geschichte der Wirtschaftswissenschaften

Methode
Theorieanwendung

Freie Schlagwörter
Applied Mathematical Finance; Econophysics; Black-Scholes Model; Stochastic Volatility; Calibration of Stochastic Volatility; Volatility Modelling

Sprache Dokument
Englisch

Publikationsjahr
2007

Seitenangabe
S. 525-535

Zeitschriftentitel
Quantitative Finance, 7 (2007) 5

DOI
https://doi.org/10.1080/14697680601103045

Status
Postprint; begutachtet (peer reviewed)

Lizenz
PEER Licence Agreement (applicable only to documents from PEER project)


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.