SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(627.6Kb)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-215921

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Edgeworth expansions and normalizing transforms for inequality measures

[journal article]

Garderen, Kees Jan van
Schluter, Christian

Abstract

Finite sample distributions of studentized inequality measures differ substantially from their asymptotic normal distribution in terms of location and skewness. We study these aspects formally by deriving the second order expansion of the first and third cumulant of the studentized inequality measur... view more

Finite sample distributions of studentized inequality measures differ substantially from their asymptotic normal distribution in terms of location and skewness. We study these aspects formally by deriving the second order expansion of the first and third cumulant of the studentized inequality measure. We state distribution-free expressions for the bias and skewness coefficients. In the second part we improve over first-order theory by deriving Edgeworth expansions and normalizing transforms. These normalizing transforms are designed to eliminate the second order term in the distributional expansion of the studentized transform and converge to the Gaussian limit at rate O(n−1). This leads to improved confidence intervals and applying a subsequent bootstrap leads to a further improvement to order O(n−3/2). We illustrate our procedure with an application to regional inequality measurement in Côte d'Ivoire.... view less

Classification
Economic Statistics, Econometrics, Business Informatics

Free Keywords
C10; C14; D31; D63; I32; Generalized Entropy inequality measures; Higher order expansions; Normalizing transformations

Document language
English

Publication Year
2009

Page/Pages
p. 16-29

Journal
Journal of Econometrics, 150 (2009) 1

DOI
https://doi.org/10.1016/j.jeconom.2008.12.022

Status
Postprint; peer reviewed

Licence
PEER Licence Agreement (applicable only to documents from PEER project)


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.