SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(296.4Kb)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-201428

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Klassifikation mit Clusteranalyse: grundlegende Techniken hierarchischer und K-means-Verfahren

Classification using cluster analysis: basic techniques in hierarchical and k-means methods
[working paper]

Wiedenbeck, Michael
Züll, Cornelia

Corporate Editor
Zentrum für Umfragen, Methoden und Analysen -ZUMA-

Abstract

'Nach einer Einführung in die Ziele der Clusteranalyse werden die Grundprinzipien der Algorithmen hierarchisch-agglomerativer und K-means-Verfahren dargestellt. Ein Schwerpunkt liegt auf der graphischen Darstellung der Ergebnisse. Außerdem werden einige Verfahren zur Validierung von Clusterlösungen,... view more

'Nach einer Einführung in die Ziele der Clusteranalyse werden die Grundprinzipien der Algorithmen hierarchisch-agglomerativer und K-means-Verfahren dargestellt. Ein Schwerpunkt liegt auf der graphischen Darstellung der Ergebnisse. Außerdem werden einige Verfahren zur Validierung von Clusterlösungen, wie der Vergleich von Lösungen hierarchisch-agglomerativer Verfahren mit K-means-Lösungen sowie Monte-Carlo-Verfahren zur Exploration des Einflusses von Startbedingungen bei K-means-Verfahren, vorgestellt.' (Autorenreferat)... view less


'The paper presents a short introduction to the aims of cluster analysis and describes the principles of hierarchical-agglomerative and K-means procedures. Graphical representations play an important role, while validation, for example by comparison of different hierarchical and K-means solutions or... view more

'The paper presents a short introduction to the aims of cluster analysis and describes the principles of hierarchical-agglomerative and K-means procedures. Graphical representations play an important role, while validation, for example by comparison of different hierarchical and K-means solutions or by Monte-Carlo simulations, is an important issue.' (author's abstract)|... view less

Keywords
statistical analysis; classification; cluster analysis; validation; algorithm; comparison; analysis procedure; procedure

Classification
Methods and Techniques of Data Collection and Data Analysis, Statistical Methods, Computer Methods

Method
development of methods; basic research

Document language
German

Publication Year
2001

City
Mannheim

Page/Pages
18 p.

Series
GESIS-How-to, 10

Status
Published Version; reviewed

Licence
Deposit Licence - No Redistribution, No Modifications


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.