SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(5.786 MB)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-191618

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Stochastic demographic dynamics and economic growth: an application and insights from the world data

Stochastische Bevölkerungsdynamik und Wirtschaftswachstum: Anwendungen und Einsichten auf der Basis von Weltdaten
[Zeitschriftenartikel]

Mishra, Tapas

Abstract

'This research has two broad objectives: First, to model population growth in a stochastic framework such that the effects of possible non-mean convergent shocks could be studied theoretically on long-run economic growth and planning. Second, an empirical strategy for modelling stochastic population... mehr

'This research has two broad objectives: First, to model population growth in a stochastic framework such that the effects of possible non-mean convergent shocks could be studied theoretically on long-run economic growth and planning. Second, an empirical strategy for modelling stochastic population growth over time is provided. Forecasting exercise has been rigorously carried for population growth and income by embedding the stochastic growth feature of population. For modelling purpose, a long-memory mechanism for population growth is suggested so that the classical economic growth assumption of constant and/ or non-stochastic population growth in economic growth models appear as a limiting case. The analytical results show that embedding the stochastic features of population growth helps in explaining the economic growth volatility. In particular, it is found to be a formidable cause of the presence of long-memory in output. The empirical analysis shows that unless the stochastic feature of population growth is taken into empirical growth models, the author will not be able map out the significant effects of demographic variables consistently over time. It is also shown that how corroborating the information of stochastic shocks of population alters our forecast vision by impacting significantly on the precision of the estimates.' (author's abstract)|... weniger

Thesaurusschlagwörter
Bevölkerungsentwicklung; Methodologie; Schätzung; Prognose; Modell; Wirtschaftswachstum; Methode; ökonomische Entwicklung; Konzeption; Stochastik; Wirtschaftsgeschichte

Klassifikation
Volkswirtschaftstheorie
Sozialgeschichte, historische Sozialforschung
Bevölkerung

Methode
historisch

Sprache Dokument
Englisch

Publikationsjahr
2008

Seitenangabe
S. 9-187

Zeitschriftentitel
Historical Social Research, 33 (2008) 4

DOI
https://doi.org/10.12759/hsr.33.2008.4.9-187

ISSN
0172-6404

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.