SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(1.951 MB)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-104611-7

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

An engagement-aware predictive model to evaluate problem-solving performance from the study of adult skills' (PIAAC 2012) process data

[Zeitschriftenartikel]

Shin, Jinnie
Wang, Bowen
Pinto Junior, Wallace N.
Gierl, Mark J.

Abstract

The benefits of incorporating process information in a large-scale assessment with the complex micro-level evidence from the examinees (i.e., process log data) are well documented in the research across large-scale assessments and learning analytics. This study introduces a deep-learning-based appro... mehr

The benefits of incorporating process information in a large-scale assessment with the complex micro-level evidence from the examinees (i.e., process log data) are well documented in the research across large-scale assessments and learning analytics. This study introduces a deep-learning-based approach to predictive modeling of the examinee's performance in sequential, interactive problem-solving tasks from a large-scale assessment of adults' educational competencies. The current methods disambiguate problem-solving behaviors using network analysis to inform the examinee's performance in a series of problem-solving tasks. The unique contribution of this framework lies in the introduction of an "effort-aware" system. The system considers the information regarding the examinee's task-engagement level to accurately predict their task performance. The study demonstrates the potential to introduce a high-performing deep learning model to learning analytics and examinee performance modeling in a large-scale problem-solving task environment collected from the OECD Programme for the International Assessment of Adult Competencies (PIAAC 2012) test in multiple countries, including the United States, South Korea, and the United Kingdom. Our findings indicated a close relationship between the examinee's engagement level and their problem-solving skills as well as the importance of modeling them together to have a better measure of students' problem-solving performance.... weniger

Thesaurusschlagwörter
Aufmerksamkeit; Gedächtnis; Problemlösen; Erwachsener; Kompetenz; Verhalten

Klassifikation
Allgemeine Psychologie

Freie Schlagwörter
PIAAC; PS-TRE; long-short-term-memory (LSTM); engagement; problem-solving performance; log information; PIAAC 2012

Sprache Dokument
Englisch

Publikationsjahr
2024

Seitenangabe
S. 1-22

Zeitschriftentitel
Large-scale Assessments in Education, 12 (2024)

DOI
https://doi.org/10.1186/s40536-024-00194-y

ISSN
2196-0739

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.