SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(1002. KB)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-104610-2

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Biased Bivariate Correlations in Combined Survey Data Measured With Different Instruments

[Zeitschriftenartikel]

Singh, Ranjit K.

Abstract

Social scientists increasingly form composite datasets using data from different survey programs, which often use different single-question instruments to measure the same latent construct. This creates an obstacle when we want to run analyses using the combined data, since the scores measured with ... mehr

Social scientists increasingly form composite datasets using data from different survey programs, which often use different single-question instruments to measure the same latent construct. This creates an obstacle when we want to run analyses using the combined data, since the scores measured with different instruments are not necessarily comparable. In this paper, we explore one consequence of such comparability problems. Specifically, we examine the case where instruments measuring the same construct have different item difficulties. This means if we applied the instruments to the same population, we would get different mean responses. If such mean differences are not mitigated before combining data, we introduce a mean bias into our composite data. Such mean bias has direct consequences for analyses based on the combined data. In data drawn from the same population, mean bias introduces error variance. In data drawn from different populations it would bias or even invert true population differences. However, in this paper I demonstrate that mean bias can also bias bivariate correlations if one or both variables in a composite dataset are subject to mean bias. If differences in item difficulty are not mitigated before combining data, we introduce a variant of Simpson's paradox into our data: The bivariate correlation in each source survey might differ substantially from the correlation in the composite dataset. In a set of systematic simulations, I demonstrate this correlation bias effect and show how it changes depending on the mean biases in each variable and the strength of the underlying true correlation.... weniger

Thesaurusschlagwörter
Harmonisierung; Erhebungsmethode; Befragung; Methodenvergleich; Korrelation; Daten; Analyse

Klassifikation
Erhebungstechniken und Analysetechniken der Sozialwissenschaften
Forschungsarten der Sozialforschung

Freie Schlagwörter
comparability; survey methodology; integrated data analysis; Simpson's paradox; pseudocontingencies; International Social Survey Programme: Citizenship II - ISSP 2014 (ZA6670 v2.0.0, doi:10.4232/1.12590); Allgemeine Bevölkerungsumfrage der Sozialwissenschaften ALLBUS 2014 (ZA5240 v2.2.0, doi:10.4232/1.13141)

Sprache Dokument
Englisch

Publikationsjahr
2024

Seitenangabe
S. 1-18

Zeitschriftentitel
Measurement Instruments for the Social Sciences, 6 (2024)

DOI
https://doi.org/10.5964/miss.11217

ISSN
2523-8930

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.