SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(1.388 MB)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-103897-0

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Never miss a beep: Using mobile sensing to investigate (non-)compliance in experience sampling studies

[Zeitschriftenartikel]

Reiter, Thomas
Schoedel, Ramona

Abstract

Given the increasing number of studies in various disciplines using experience sampling methods, it is important to examine compliance biases because related patterns of missing data could affect the validity of research findings. In the present study, a sample of 592 participants and more than 25,0... mehr

Given the increasing number of studies in various disciplines using experience sampling methods, it is important to examine compliance biases because related patterns of missing data could affect the validity of research findings. In the present study, a sample of 592 participants and more than 25,000 observations were used to examine whether participants responded to each specific questionnaire within an experience sampling framework. More than 400 variables from the three categories of person, behavior, and context, collected multi-methodologically via traditional surveys, experience sampling, and mobile sensing, served as predictors. When comparing different linear (logistic and elastic net regression) and non-linear (random forest) machine learning models, we found indication for compliance bias: response behavior was successfully predicted. Follow-up analyses revealed that study-related past behavior, such as previous average experience sampling questionnaire response rate, was most informative for predicting compliance, followed by physical context variables, such as being at home or at work. Based on our findings, we discuss implications for the design of experience sampling studies in applied research and future directions in methodological research addressing experience sampling methodology and missing data.... weniger

Thesaurusschlagwörter
Methodologie; Stichprobe; Antwortverhalten

Klassifikation
Erhebungstechniken und Analysetechniken der Sozialwissenschaften
Forschungsarten der Sozialforschung

Freie Schlagwörter
Experience sampling; Ecological momentary assessment; ESM; Mobile sensing; Non-response; Compliance; Compliance bias; Deutsche Version der Positive and Negative Affect Schedule PANAS (GESIS Panel) (ZIS 242, doi:10.6102/zis242)

Sprache Dokument
Englisch

Publikationsjahr
2024

Seitenangabe
S. 4038-4060

Zeitschriftentitel
Behavior Research Methods, 56 (2024) 4

DOI
https://doi.org/10.3758/s13428-023-02252-9

ISSN
1554-3528

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.