SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(externe Quelle)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://doi.org/10.1080/17579961.2024.2313795

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Unlocking the Black Box: Analysing the EU Artificial Intelligence Act's Framework for Explainability in AI

[Zeitschriftenartikel]

Pavlidis, Georgios

Abstract

The lack of explainability of Artificial Intelligence (AI) is one of the first obstacles that the industry and regulators must overcome to mitigate the risks associated with the technology. The need for ‘eXplainable AI’ (XAI) is evident in fields where accountability, ethics and fairness are critica... mehr

The lack of explainability of Artificial Intelligence (AI) is one of the first obstacles that the industry and regulators must overcome to mitigate the risks associated with the technology. The need for ‘eXplainable AI’ (XAI) is evident in fields where accountability, ethics and fairness are critical, such as healthcare, credit scoring, policing and the criminal justice system. At the EU level, the notion of explainability is one of the fundamental principles that underpin the AI Act, though the exact XAI techniques and requirements are still to be determined and tested in practice. This paper explores various approaches and techniques that promise to advance XAI, as well as the challenges of implementing the principle of explainability in AI governance and policies. Finally, the paper examines the integration of XAI into EU law, emphasising the issues of standard setting, oversight, and enforcement.... weniger

Thesaurusschlagwörter
künstliche Intelligenz; Europäisches Recht; Regulierung; Transparenz

Klassifikation
Recht
Technikfolgenabschätzung

Sprache Dokument
Englisch

Publikationsjahr
2024

Seitenangabe
S. 293-308

Zeitschriftentitel
Law Innovation and Technology, 16 (2024) 1

ISSN
1757-997X

Status
Preprint; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung, Nicht kommerz., Keine Bearbeitung 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.