Volltext herunterladen
(externe Quelle)
Zitationshinweis
Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://doi.org/10.1177/20539517221089305
Export für Ihre Literaturverwaltung
Social impacts of algorithmic decision-making: A research agenda for the social sciences
[Zeitschriftenartikel]
Abstract Academic and public debates are increasingly concerned with the question whether and how algorithmic decision-making (ADM) may reinforce social inequality. Most previous research on this topic originates from computer science. The social sciences, however, have huge potentials to contribute to resea... mehr
Academic and public debates are increasingly concerned with the question whether and how algorithmic decision-making (ADM) may reinforce social inequality. Most previous research on this topic originates from computer science. The social sciences, however, have huge potentials to contribute to research on social consequences of ADM. Based on a process model of ADM systems, we demonstrate how social sciences may advance the literature on the impacts of ADM on social inequality by uncovering and mitigating biases in training data, by understanding data processing and analysis, as well as by studying social contexts of algorithms in practice. Furthermore, we show that fairness notions need to be evaluated with respect to specific outcomes of ADM systems and with respect to concrete social contexts. Social sciences may evaluate how individuals handle algorithmic decisions in practice and how single decisions aggregate to macro social outcomes. In this overview, we highlight how social sciences can apply their knowledge on social stratification and on substantive domains of ADM applications to advance the understanding of social impacts of ADM.... weniger
Thesaurusschlagwörter
Entscheidungsfindung; Algorithmus; soziale Ungleichheit; künstliche Intelligenz; soziale Folgen; Umfrageforschung; Datenaufbereitung; Analyse
Klassifikation
Forschungsarten der Sozialforschung
Technikfolgenabschätzung
Freie Schlagwörter
fair machine learning; social impacts of AI
Sprache Dokument
Englisch
Publikationsjahr
2022
Seitenangabe
S. 1-13
Zeitschriftentitel
Big Data & Society, 9 (2022) 1
ISSN
2053-9517
Status
Veröffentlichungsversion; begutachtet (peer reviewed)