SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(external source)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://doi.org/10.1177/00472875251322512

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Destination Competitiveness Improvement: Insights From Causal Counterfactual AI Analysis

[journal article]

Xia, Haiyang
Muskat, Birgit
Karl, Marion
Li, Qian
Li, Gang

Abstract

Previous methods for destination competitiveness improvement have mainly focused on identifying and prioritizing competitive disadvantages of destinations. Although effective, this approach may not be optimal as it may require more change than improving combinations of other competitive disadvantage... view more

Previous methods for destination competitiveness improvement have mainly focused on identifying and prioritizing competitive disadvantages of destinations. Although effective, this approach may not be optimal as it may require more change than improving combinations of other competitive disadvantages. Furthermore, these methods neglect the differing foci of travel experiences between tourist groups and have been unable to identify targeted competitiveness improvement strategies for different tourist groups. This study addresses these research gaps by developing an analytical framework that can identify targeted strategies that entail minimal changes to improve the competitiveness of destinations for different tourist groups, based on user-generated data, aspect-level sentiment analysis, and the optimization-based causal counterfactual Al algorithm. The application of the framework is demonstrated through a case study involving four destinations in Australia. The proposed analytical framework and findings are valuable in assisting destinations to improve their competitiveness in today’s increasingly competitive experiential tourism market.... view less

Keywords
tourism; competitiveness; tourist; satisfaction; data capture

Classification
Leisure Research
Economic Sectors

Free Keywords
causal counterfactual AI algorithm; user-generated data; aspect-level sentiment analysis; decision analytics; destination competitiveness improvement

Document language
English

Publication Year
2025

Journal
Journal of Travel Research (2025) OnlineFirst

ISSN
1552-6763

Status
Published Version; peer reviewed

Licence
Creative Commons - Attribution-NonCommercial 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.