SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(externe Quelle)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://doi.org/10.1177/00472875251322512

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Destination Competitiveness Improvement: Insights From Causal Counterfactual AI Analysis

[Zeitschriftenartikel]

Xia, Haiyang
Muskat, Birgit
Karl, Marion
Li, Qian
Li, Gang

Abstract

Previous methods for destination competitiveness improvement have mainly focused on identifying and prioritizing competitive disadvantages of destinations. Although effective, this approach may not be optimal as it may require more change than improving combinations of other competitive disadvantage... mehr

Previous methods for destination competitiveness improvement have mainly focused on identifying and prioritizing competitive disadvantages of destinations. Although effective, this approach may not be optimal as it may require more change than improving combinations of other competitive disadvantages. Furthermore, these methods neglect the differing foci of travel experiences between tourist groups and have been unable to identify targeted competitiveness improvement strategies for different tourist groups. This study addresses these research gaps by developing an analytical framework that can identify targeted strategies that entail minimal changes to improve the competitiveness of destinations for different tourist groups, based on user-generated data, aspect-level sentiment analysis, and the optimization-based causal counterfactual Al algorithm. The application of the framework is demonstrated through a case study involving four destinations in Australia. The proposed analytical framework and findings are valuable in assisting destinations to improve their competitiveness in today’s increasingly competitive experiential tourism market.... weniger

Thesaurusschlagwörter
Tourismus; Wettbewerbsfähigkeit; Tourist; Zufriedenheit; Datengewinnung

Klassifikation
Freizeitforschung, Freizeitsoziologie
Wirtschaftssektoren

Freie Schlagwörter
causal counterfactual AI algorithm; user-generated data; aspect-level sentiment analysis; decision analytics; destination competitiveness improvement

Sprache Dokument
Englisch

Publikationsjahr
2025

Zeitschriftentitel
Journal of Travel Research (2025) OnlineFirst

ISSN
1552-6763

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung, Nicht-kommerz. 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.