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Aspects Concerning Data Fusion 
Techniques 

SUSANNE RAESSLER A-ND KA.RLHEINZ FLEISCHER 

Abstract: Data fusion techniques merge data sets of different survey samples 
by means of statistical matching on the basis of common variables. As a result 
a virtual sample of complete, but artificial nature is generated. Because being 
completely unobserved, the missing information of an individual in one sample is 
imputed using the observed data values of some individual which is found to be 
most similar in the other sample. The power of data fusion techniques is analysed 
and the parameters of the distributions of d variables in the artificial sample are 
form ula ted. The correla tion be tween variables not join tly o bserved, which can only 
be estimated by means of the matched file, is of main interest herein. Furthermore 
the influences of nearest neighbour matches, several so-called marriage processes, 
and small sample sizes are the focus of Simulation s t  udies. 

Ke y words: missing information, impu tation, merging data sets, statistical mat- 
ching. 

1 Introduction 

Empirical studies concerning the association between individual television viewing 
and purchasing behaviour, for instance, occure to be difficult in the majority of 
cases. The ideal medium would be a very large consumer panel, where each in- 
dividual's purchasing and television viewing behaviour would both be measured. 
However, the costs of running a large single source panel of this kind are prohibiti- 
vely high. Furthermore, a high percentage of nonresponses or poor quality of data 
are to be expected. A powerfully attractive alternative is to make use of a data 
fusion technique to link together, for example the viewing information available 
from a television measurement panel with the purchasing data available from an 
exisiing .large market tracking panel. 

Especially in the area of media analyses, data fusions have been performed in 
France and the UK with a reasonable degree of accuracy as published by Antoine 
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(1987), Baker (1990) and Roberts (1994). Further descriptions of data fusions 
done in practice could be found by Okner (1972a and b), Okner (1974)) Ruggles 
and Ruggles (1974) or Scheler and Wiegand (1987). On the other hand there is 
scepticism among theoretical and practical statisticians about the power of fusion 
techniques (see Sims (1972a and b), Bennike (1987) or Gabler (1997)). Only a 
few publications, for instance, Woodbury (1983), Sims (1972a and b), Kovacevic 
and Liu (1994) or Wiedenbeck (1995), are known to mathematically study fusion 
algorithms and investigate their efficiency under certain circumstances. 

This paper analyses the power of some data fusion techniques. Their influence on 
the estimated joint distribution of the variables not jointly observed will be shown 
herein with the help of mathematical methods as well as simulation studies. 

2 Fusion algorithm 

Data fusion is initiated by two samples, one usually of larger size than the other, 
with the number of individuals appearing in both samples (i.e. the overlap) clearly 
negligible. Only certain variables, say Z ,  of the interesting individual's characte- 
ristics can be observed in both samples; they are called common variables. Other 
variables, Y, appear only in the larger sample while others, X ,  are observed exclu- 
sively in the smaller sample. (For generalization purpose X, Y, Z can be treated as 
vectors of variables.) Since no single sample exists with information on X ,  Y and 
Z together, an artificial sample has to be generated by matching the observations 
of both samples according to Z. The matching is performed at an individual level 
by means of statistical matching; this is often called the marriage process. 

Without a loss of generality, let the smaller (X, 2) sample be the so-called reci- 
pient sample and the larger (Y, 2) sample the donor sample. For every unit i of 
the recipient sample with the observations (Xi, ~ i )  a value y from the observations 
of the donor sample is determined and a data set (XI,  yi , zi ), . . . , (znE, ynE, znE ) 
is constructed with nE elements of the recipient sample. The main idea is to 
search for a statistical match, i.e. a donor unit j whose observed data values of 
the common variables are identical to those of the recipient unit i. 

As long as the overlap is poor, there is little chance to find a perfect match for 
each individual, especially if (some) common variables are continuous. Described 
by Baker (1990), Roberts (1994) or Antoine (1987), the marriage process is carried 
out using an algorithm based on nearest neighbour techniques calculated by means 
of a distance measure d ( . ,  .). The. marriage algorithm may use all or some of the 
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common variables,, weighted or not, to find for each recipient unit i one (or more) 
donor unit(s) j whose distance d(z,, z,) is minimal. By restricting the multiple 
choice of a donor for different recipients, further variations on the algorithm can 
be created. To limit the number of times a donor is taken, a penalty weight may 
be placed on donors already used, as the multiple choice will otherwise reduce the 
effective sample size and lead to underestimation of the true variance. Another 
modification is to take the next three (or any other number) donors and impute 
their (weighted) mean. If the multiple use of donors is restricted or combined with 
a penalty function, the resulting artificial sample, i.e. the fusion sample, may vary 
depending on the order the donor units are taken. Other algorithms are known 
to  limit this problem by, for instance, cross-checking all matches after fusion 
and sometimes abandoning certain matches in order to find a better donator- 
recipient combination afterwards. Antoine (1987) gives a short description of such 
algorithms. 

2.1 Distributions computed by fusion 

In the following all density functions (joint, marginal or conditional) and their 
parameters produced by the fusion algorithm will be marked by the symbol -. 

Let X, Y, Z be multivariate random variables with joint discrete or continuous 
density function fx, Y,z. Thus, for discrete variables, fx, Y,z (X,, yi , 2,) describes the 
probability to draw a certain unit i with observation (Xi, yi, zi) and for continuous 
variables it is the value of the joint density function a t  the point (X,, yi, 2,). To 
keep things simple, only the expression "probability" will be used hereafter. In 
case of continuous variables, f as the density function instead of the probability 
function may be taken. 

If the units of the two samples are drawn independently from each other, the 
distribution of the donor sample of size ns is n:Zl fy,z(yi, ~ i )  and likewise the 
recipient sample is distributed with probability function n:fl fx , z  (X,, zi) .  

Furthermore, let the fusion algorithm be one of multiple choice of the donor units 
without any penalty function. Thus the units of the artificial sample can be trea- 
ted as being drawn independently with probability f x , ~ , z ( x ,  Y, ,., z )  each. The fusion 
algorithm therefore induces the probability distribution n:fl fx,v,z (X< ,  yi, 2,) on 
the set of all possible fusion samples. They can be handled-as simple random samp- 
les drawn from an artificial population with distribution fx,y,z (X, y, z), which may 
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be called the "fusion distribution" . 

Often the fusion sample is used to estimate parameters (such as means, variances, 
covariances or higher moments) of the "initial" population following f x , ~ ,  z (X, y, z) 
with 4raditional methods. To judge the quality of such estimates, which in fact 
means the power of the fusion, the relation between fx,y,z (X, y,z) and fx,y,z (X, y,z) 
has to be examined. 

2.1.1 Distribution of the artificial sample 

As already specified, let the probability to get a particular unit i after the fusion 
with observation (X;, yi, zi) be fX, (X,, yi, 2;). This is equivalent to the probabi- 
lity of drawing a particular unit i of the recipient sample with observation (X,, z;) 
and merging this unit with a unit j from the donor sample with observed values 
(Y,, zj),  where z; = zj. The probability for a donor unit j with observed value 
z j  = Zi from Z to have the observation yj from Y is obviously fy l z (~ j l z j ) .  

Hence the probability to observe (X, y, z) for any unit of the fusion sample is 

provided that donor and recipient sample have been drawn independently from 
the same population. Thus, 

and the conditional distribution is given by 

I t  should be noted that this derivation is only admissible if, for every recipient 
unit, there is a donor unit with the Same observed value z for Z. Especially in case 
of continuous distributions, this will not happen often, and a nearest neighbour 
unit in z has to be merged. The influence of such a nearest neighbour match on the 
computed distribution after the fusion will be discussed on the basis of simulation 
studies as well hereinafter. 



Raessler/Fleischer: Aspects Concerning Data Fusion Techniques 321 

2.1.2 Marginal  d is t r ibut ions  after  t h e  fusion 

The marginal distributions of f;r,v,z are now easily obtained with the help of (2): 

= f x ( 4  - 
as is f y  (y) = f y  (Y) and fz(z) = fz(z).  Furthermore 

and also h z ( y ,  I) = fYpz(y, z). Different from their initial distributions are 

Thus, the distribution of X ,  Y, Z after the fusion is equal to the initial distribution 
if X and Y are independent, conditional on every possible value z of Z ,  i.e. 

Especially Sims (1972a and b) called for conditional independence as a main 
assumption for a reliable fusion. 

Moreover, all marginal distributions, which could have been estimated already 
by the two separate samples, are identical before and after the fusion. Only the 
joint distributions of variables not jointly observed are different. Note that all 
derivations above are valid for vectors of random variables-X, Y, Z as well. Accor- 
dingly all moments concerning variables of one or the other sample are identical 
for the fusion distribution and the initial distribution. See for instance px = p x ,  
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E(x') = E(x'), G$ = U$ and so on. Thus testing the accuracy of the fusion by 
properties of the marginal distributions of variables observed in one of the two 
samples is by no means useful for validation of fusion results. 

Consider now the moments of the joint distribution of variables from different 
samples. The correlation between X and Y generated by the fusion, measured as 
covariance G ( x ,  Y), is 

This result, however, can easily be obtained by first calculating E(Cov(X, YIZ)): 

E(Cov(X, YIZ)) = / [E(X - YIZ = I) - E ( X / Z  = z)E(YIZ = z)] fz(z)dz 

= / [/ / ~ Y f x . y , z ( ~ . Y l ~ ) d ~ d Y  

- J x f x p  tx~z)dx J ufrIz(Ylz)dy fz(z)dz I 
= J/ JxYfx,rlz (X. Yz)fz(z)dXdydz 

-Jj/xYfxlz(xlz)fYll(Ylz)fz(z)dxdYdz 

= J J J ~ u f x . y , z ( x ,  Y, z)dxdudz 

- J J / XY~x,r ,z(x.  Y, z)dxdydz 

= E(XY) - E(xY). 49) 

Thus QXY) = E(XY) - E(Cov(X, YIZ)) and - 
E(XY) - p x p y  = E(XY) - p x p y  - E(Cov(X, YIZ)) and because of p = C. - 

Cov(X, Y) = Cov(X, Y) - E(Cov(X, YIZ)) 9.e.d. 

This leads to 

E(Cov(X, YIZ)) = Cov(X, Y) - C ~ V ( X ,  Y ) ,  (10) 

i.e. the average covariance of X and Y is just the difference of the covariances 
from the initial, the real distribution and the fusion distribution. I t  may be used 
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as a quality measurement of the fusion. The closer this value gets to Zero, the 
better the true correlation is reproduced by the fusion. 

In analogy to (9) it is quite simple to show, that 

E(CÖV(X', Y'IZ)) = E(X'YJ)--.E(X'YJ) and (11) 

CoV(xi, Y') = COV(X', Y') - E(COV(X', YjlZ)) ( i ,  j E IN). (12) 

Accordingly the fusion can produce "good results" concerning the true correla- 
tion between the variables X and Y never jointly observed only if they are o n  
the average conditionally uncorrelated,  i.e. E(Cov(X, YIZ)) = 0. The Same 
applies to higher moments. Therefore the independence of X und Y conditional 
on Z,  as postulated by Sims (1972a and 1972b), is sufficient but not necessary. 

2.2 A p p l i c a t i o n o n c e r t a i n  distr ibutions 

Under the assumption of a multivariate normal distribution for the joint distri- 
bution of X, Y, Z Wiedenbeck (1995), has shown the following results after the 
fusion, independent of the real correlation Cov(X, Y): 

G ( x ,  Y) = 2x.y = ux,zuy,z 

622 . (13) 

Using the expression (10) this leads to 

E(Cov(X, Y 12)) = Cov(X, Y) - C V ( X ,  Y) = u x , ~  - ux,z uy,z 

4 

Thus, after the fusion process the variables X and Y are computed uncorrelated 
without respect to their initial correlation, if X, Z or Y, Z are uncorrelated. 
Otherwise, if X, Z and Y, Z are correlated, then X ,  Y are computed correlated as 
well, although they may be uncorrelated initially. 

Consider now X, Y, Z as being transformed via (eX, eY, eZ) to lognormally dis- 
tributed random variables whose means, variances and covariance are specified 

by 

,& = e'X+0.5"2X 

U? = e ''X+"; (eu2X - 1) = p52(eu2X - 1) 

ePX+~.5u:+~~+0.5": (ePX,Y"X'Y - 1) = p*XS*y(e~~.Y - 1) 
&,Y = 
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and so On. Let the parameters of the distribution of transformed variables based 
on a normal distribution be marked by the symbol *. Finally the reproduced 
correlation of X and Y is given by 

In general, it could be dificult to calculate the exact formulas of the covariance 
reproduced by the fusion algorithm. Therefore, the investigation hereinafter will 
be if and to what degree of accuracy the presented results can be computed by 
simulation. 

3 An experimental design 

As mentioned before the fusion distribution was derived assuming the existence 
of a donor unit with identicd z-vdues for every recipient unit. Since it is com- 
mon practice to use several sociodemographical variables often combined with 
other continuous variables as common Z variables, the above assumption is most 
unlikely. 

Hence the simulation study in the following is performed to consider the accuracy 
of the fusion distribution and estimators such as means, variances and covarian- 
Ces derived from it and affected by different continuous variables. Likewise, the 
influence of nearest neighbour matches, different marriage processes, and vaving 
sample sizes will be discussed. 

To keep it simple, the simulation study is limited to trivariate normal and lognor- 
mal distributions. 

3.1 Random number generation 

To generate random numbers considered as realizations of a standard normal 
distribution, a simple random number generator randn() of the MATLAB 4.0 
program is used. All the programs needed for the simulation study have been 
created in the matrix programming language MATLAB 4.0 which is a product 
and trademark of The Math Works, Inc. 
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Based on standard normally distributed variables U, V, W produced by randn(), 
the multivariate normally distributed variables X, Y, Z are given by 

assisted by their conditional distributions, for further notes See Johnson (1987), 
p. 50. Realizations of lognormally distributed random variables are easy to obtain 
by calculating (ex, e Y, ez). 

3.2 Marriage processes 

The statistical match or marriage process is carried out by using a simple nearest 
neighbour algorithm first. For each recipient unit i ,  the missing information Y is 
imputed taken from the donor unit j whose distance jzi -zjI is minimal. The donor 
sample size is twice the recipient sample size with n s  = 10000 and nE = 5000. A 
donor unit can be used many times without restrictions for other marriages; this 
process may be c d e d  "polygamy". 

Moreover, the sample sizes are reduced considerably. Further variations of the 
algorithm are dealt with by restricting the multiple choice of the donor units. 
Thus the following experimental design results: 

(1) "Polygamyn, i.e. any multiple use of donor units is allowed with 

- n s  = 1000, nE = 500 and 

- n s  = 500, nE = 500. 

(2) "Bigamy", i.e. any donor unit can be used twice only with 

- n s  = 1 0 0 0 , n ~  = 500 and 

- n s  = 500, nE = 500. 

(3) "Monogamy", i.e. any donor unit can be used once only with 

- n s  = 1000, nE = 500 and 

- n s  = 500, nE = 500. 
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If the data sets are sorted, the order of sampling donor units influences the 
resulting fusion sample. Since the sample units are ordered a t  random, no 
special effect is to be expected by sampling one unit after the other. 

(4) ".F'ree-triple", i.e. imputing the observations' mean of the next three-donor 
units allowing multiple choice with 

- ns = 1000, nE = 500 and 

Since the variance of the mean of n observations is no longer identical with 
the variance of the population, it is not possible to reproduce even the 
true variance of Y by the fusion. In case of normal distributed Y and Z 
variables, the reproduced variance of Y is now given by 

Thus, with the assumption of normal distributions for the free triple the 
following is true: 

which does not match the variance a$ of the initial population. 

3.3 Simulation of the reproduced covariance 

Now nE random variables (X;, 2,) and ns random variables (Y,, Zj)  are generated 
independently due to a given trivariate normal distribution or its transformations 
with mean vector p and covariance structure C. This could be done either in 
accordance with their marginal distributions or by generating a sample of the 
trivariate distribution and splitting it at  random. Then the two samples are merged 
in accordance with the specified algorithms. The empirical covariance, i.e. the 
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estimate of the reproduced covariance, is calculated by 

from the fusion sample. This procedure is repeated k times. In this manner the 
estimated mean and variance of the empirical covariance are obtained from the 
simulated distribution. In particular, for every considered distribution 

.. 
and z x , y  - E(Ox,y)  are calculated. To assure the accuracy of the simulation, to 

A .. 
what extend E ( Z X l y )  and &,Y agree is checked since the fusion only reproduces 
this covariance and not a x , y .  Furthermore, a t-statistic like value is computed 

A - - 
with t = E("~)-"x*y - Jk to ease interpretation. 

~("x,Y 

As the true variance of the imputed variable Y is changed by use of the free triple, 
h ~2 

the value of E(OY) is tabulated as well when using this algorithm. 

To get results in reasonable time, the simulation has to be restricted to k = 100. On 
a 100 MHz pentium computer it takes about 4.2 hours to generate one empirical 
distribution with ns = 10000. 

4 Results of the simulation 

4.1 Reproduced covariances 

The simulation study is done with the following parameter set for the normal 
distribution 

That  means U.,. = p . , . ;  the parameters px,z = py,z = 0 and 0.5 together with 
px,y = 0.1,0.5 and 0.9 each are assumed. 

Using the multivariate lognormal distribution, it is possible to specify mean vectors 
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and covariance structures such as shown by Johnson (1987), p. 83. As mentioned 
before, the parameters of the lognormal distribution are marked by the symbol *. 

As shown in .detail below, the results are quite stable despite the rather small 
simulation size of k = 100. The sample sizes are n s  = 2 n ~  = 10000 allowing 
multiple choice of donor units, i.e. polygamy. The different distributions used 
and the real correlations between X and Y have no influence on the reproduced 
covariances. Likewise the reproduced covariances are uninfluenced by the need to 
merge nearest neighbours instead of donor units identical in 2. 

Table 1: Normal distribution with n s  = 2 n ~  = 10000 using polygamy 

Table 2: Lognormal distribution with n s  = 2nE = 10000 using polygamy 

As mentioned before, the true correlation px,y has no influence on the correlation 
generated by the fusion. 

4.2 Influences of the marriage processes and the sample sizes 

Even reducing the rather large sample sizes of recipient and donor samples t o  only 
n s  = 1000 and nE = 500 does not affect the results. The same holds when several 
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marriage processes are considered as is reported in the following tables. Since the 
true correlation px,y is of no influence, the Simulation is done via k recipient and 
k donor samples generated for different px,z and p y , ~  values. 

Table 3: Normal distribution with ns  = 2nE = 1000 using polyga.my 

Table 4: Normal distribution with n s  = nE = 500 using polygamy 

Table 5: Normal distribution with n s  = 2nE = 1000 using bigamy 
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Table 6: Normal distribution with ns = n E  = 500 using bigamy 

Table 7: Normal distribution with n s  = 2 n ~  = 1000 using monogamy 

Table 8: Normal distribution with n s  = nE = 500 using monogamy 
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Table 10: Normal distribution with ns = 2nE = 1000 using free triple 

Table 11: Normal distribution with ns = nE = 500 using free triple 

Again the simulation results turn out very stable and match the theoretical results 
quite well. Therefore, it seems not necessary to examine more combinations such 
as px,z # py,z or positive/negative p. 

Few absolute t-values are greater than 2. Neglecting the case of monogamy, this 
seems not to be systematic but a matter of small k. The different marriage proces- 
Ses show no further influence on the reproduced covariances as long as the donor 
sample is twice the recipient sample (or just larger). Even the very small sample 
sizes do not much affect the results. Only when using monogamy and identical 
sample sizes, meaning that every donor unit is used once, are bigger differences 
reported. If recipient and donor sample sizes are similar, this algorithm is of no 
practical use, of Course. Furthermore, using the free triple the reproduced cova- 
riance is simulated just as weU as the reproduced variance; for evidence See (15). 
Even this algorithm is not able to reproduce the true correlation between X and 
Y nor, the true variance of Y. 



332 ZUMA Nachrichten Spezial, August 1998 

5 Conclusions 

The results are obvious. Fusion of data sets using such rather simple algorithms 
can reproduce the true.correlation between variables X and Y not jointly observed 
if and only if they are uncorrelated on the average conditional on the common 
variable 2, i.e. if E(Cov(X, Y 12')) = 0. 

The stronger demand for conditional independence is not necessary if the interest 
is focused on the correlation (or higher moments) between X and Y only. 

In general, the parameters reproduced by the fusion are not affected by merging 
nearest neighbour units instead of st atistical twins. The influence of several mar- 
riage processes on the reproduced parameters is likewise low. The free triple (or 
any mean of n observations) should not be used if inference is done without cor- 
recting the variance of Y reproduced by the fusion. Finally, the sample sizes are 
not important, but the donor sample should be of larger size than the recipient 
sample if multiple use of donor units is restricted anyway. 
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