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The factorial survey is an experimental design where respondents are asked 
to judge descriptions of varying situations (vignettes) presented to them. 
Combining the vignette variables (factors) and their levels is done by the 
researcher, who also takes the responsibility for getting an optimal design.
To represent the universe of possible level combinations as accurately as 
possible, random designs are mostly used. A possible alternative are quoted 
designs. Up to now, there has been little discussion and only few research 
studies done about the pros and cons of random and quota samples for fac­
torial surveys. The purpose of this article is to contribute to filling this gap. 
The conclusions drawn from the statistical considerations are illustrated by 
example analyses on the basis of fictitious data. Since the data structure pro­
duced by a factorial survey is a hierarchical one, the empirical analyses are 
carried out by using a multilevel program.

Keywords: fa c to r ia l su rvey : v ign ettes: random  design: fra c tio n a l fac to ria l 
design: D -effic ien t design: m u ltileve l a n a lysis

The factorial survey— also known as vignette analysis— is a procedure 
that allows one to analyze judgment behavior under concrete condi­

tions that are much closer to real-life judgment-making situations than 
relatively abstract questions that are more typical for opinion surveys. Jud­
ging several of such similar but not identical situations by each respondent 
allows decomposing the structure of the individual answer behavior and 
thereby uncovering the impact of its different determinants. The central 
idea behind factorial surveys, a procedure that essentially goes back to 
Rossi (cf. Rossi and Nock 1982:9 or Jasso 1988:921), consists of transfer­
ring the basic principles of the factorial design into the sample survey.

Author’s Note: I thank two anonymous SMR reviewers for a number of helpful comments 
and suggestions.
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The factorial design is an experimental design in which the researcher 
constructs some descriptions of similar situations, which will be judged by 
respondents under a particular aspect. One could, for instance, examine on 
the basis of concrete situational descriptions how much age, education, 
knowledge of a country’s language, nationality/origin, and religion of a 
fictitious immigrant influence the extent respondents agree or disagree 
with providing a residence permit or nationalization into one’s own coun­
try (for a similar research question, see Jasso 1988). A respective situa­
tional description (vignette) can be presented either on a record sheet or a 
rectangular field in the questionnaire. A vignette forjudging the social sta­
tus of a person could, for example, include one of three specified levels 
for education as well as three levels for occupation (cf. Rossi and Ander­
son 1982:31). For two variables, each consisting of three different levels, 
it is possible to construct a maximum number of 32 =  9 vignettes (Carte­
sian product), which together represent the completely crossed vignette 
universe. Judging all nine vignettes by each participant ensures that the 
given variables stand according to their composition orthogonal to each 
other. The designation factorial design also goes back to this feature.

With an increasing number of characteristics considered important 
from the theoretical point of view and/or with an increasing number of 
levels distinguished for each characteristic, it rapidly gets impossible for a 
respondent to judge all vignettes of the complete vignette universe. To 
bridge this bottleneck, the demand for judging all vignette combinations 
by each participant has been relaxed for the factorial survey. In factorial 
surveys, each respondent has to judge only a reduced sample from the 
entire vignette universe. The number of vignettes included into the 
reduced sample should remain high enough for estimating respondent- 
specific regression analyses. In this way, one of the central advantages of 
factorial surveys, the possibility for decomposing the structure of indivi­
dual answer behavior, will be retained. However, by reducing the sample 
size, the question of getting an optimal sample becomes important.

Basically, two different designs for arranging vignette samples have 
been suggested in the literature: These are random designs and quota 
designs. Most introductions into vignette analysis only advise drawing ran­
dom samples (e.g., Rossi 1979:179; Rossi and Anderson 1982:40-41; Jasso 
2006:343), whereby each participant gets a unique random sample of the 
same size. A basically different procedure for constructing the samples is 
predominantly used for conjoint analysis, a method very closely related to 
vignette analysis:1 Conjoint analyses are carried out almost always with 
special quota samples, among them predominantly the so-called fractional
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384 Sociological M ethods & Research

factorial designs (cf. Gustafsson, Herrmann, and Huber 2000:17; Marshall 
and Bradlow 2002:675). Alternatively, one also can use another kind of 
quota sample, the so-called D-efficient designs (cf. Kuhfeld, Tobias, and 
Garratt 1994). In both of these cases, all participants get identical sets of 
vignettes to be judged.

Up to now, there has been little discussion and only a few research stu­
dies about the pros and cons of random and quota samples for factorial 
surveys.2 The purpose of this contribution is—besides giving a short intro­
duction to the basic ideas of their main variants—to compare both meth­
ods regarding their main advantages and disadvantages with respect to 
feasibility as well as to statistical and methodological issues. The conclu­
sions drawn from the latter considerations will be illustrated by example 
multilevel analyses carried out by using simulated answer behavior for 
random as well as for quota designs.3

Basic Ideas and Main Variants 
of Random and Quota Designs

Random Designs
First, two proposals that have been made in the literature for using ran­

dom designs can be distinguished. One proposal recommended by Rossi 
and Anderson (1982:40-1), in their introduction to the factorial survey, is 
to pick out the values (levels) of each vignette variable (characteristic) at 
random. In this way, a unique random sample of the same extent will be 
produced for each participant (simple random design with replacement', 
for an application, see, e.g., Alves and Rossi 1978:544-5). To avoid hav­
ing a vignette selected twice for a vignette set, it might be preferable in 
general to draw the vignettes for each vignette set separately at random 
from the fully crossed vignette universe (simple random design without 
replacement; cf. also Jasso 2006:342-3). The basic idea behind using such 
simple random designs is to represent the complete vignette universe as 
accurately as possible by distinct vignette samples of the same sample 
size. Within the limits of sampling error, each randomly drawn vignette 
sample is a reduced representative sample of the whole vignette sample 
from which it originates. Adding such random samples to each other pro­
duces again a random sample of the whole vignette universe. Thus, the 
combined random sample is like the individual distinct random samples 
within the limits of a comparably much smaller sampling error, which is
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also a representative sample of the whole vignette universe (cf. Rossi and 
Anderson 1982:29-30).

The other proposal, more recently made by Beck and Opp (2001:292-3), 
is to draw without replacement only several random samples of the same 
size from the whole vignette universe and to use each of these vignette sets 
several times for an advance specified, fixed number of different partici­
pants (clustered random design). Probably, the most important reason for 
applying this variant is to obtain multiple ratings per vignette, allowing not 
only respondent-specific but also vignette-specific analyses (cf. also Jasso 
2006:379-80). Drawing vignettes without replacement ensures that a maxi­
mum number of different vignettes will be covered by the combined vign­
ette sample. If the completely crossed vignette universe consists of 
relatively few different vignettes, if the chosen set size is relatively high, 
and/or if a relatively high number of respondents will participate in a factor­
ial survey, it might also be possible to cover the whole vignette universe 
(for an application of clustered random designs, see, e.g., Jasso and Rossi 
1977:643; Jasso and Opp 1997:953; Beck and Opp 2001:293). The most 
extreme application of a clustered random design would be to restrict the 
survey to only one vignette sample. In this way, different sampling errors 
that otherwise would result from using more than one vignette sample will 
be leveled off by holding them constant (cf. also Jasso 2006:393). But a 
constant sampling error does not mean that there is no sampling error. If a 
random sample deviates strongly from the vignette universe and if a high 
number of respondents judged the vignettes over and above this, a generali­
zation of the empirical results to the vignette universe might be biased by 
high errors, threatening the validity of the study. For this reason, drawing 
only one random vignette sample for all participants cannot be recom­
mended. However, the view stated by Alves and Rossi (1978:544) that a 
generalization to the vignette universe would be lost without exception 
seems too pessimistic—at least for vignette samples very similar to the 
vignette universe.4

Quota Designs
Unlike simple random sampling, where the basic intent is to represent 

the vignette universe by different vignette samples, quota sampling tries 
to cover the vignette universe in central aspects by constructing only one 
vignette set. Whereas using only one random sample would leave the deci­
sion about which of the huge amount of possible vignette sets should be
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used for all participants to chance, quota sampling borrows from the com­
pletely available knowledge about the statistical properties of the vignette 
universe for selecting the most suitable vignette sample.

In general, two different variants of quota designs can be distinguished: 
the more classical fractional factorial designs and D-efficient designs. In 
the following, the basic ideas for both types are outlined, starting with the 
more classical variant.

Fractional factorial designs. A central property of the vignette universe 
is that each possible level combination of different variables appears exactly 
one time. This characteristic does guarantee not only that all levels of a vari­
able occur equally frequently (symmetrical or balanced) but also that the 
variables of different characteristics and all their interaction terms are 
mutually uncorrelated (orthogonal; cf. also Addelman 1962:23). In contrast 
to all other single samples, one sometimes will find a fractional factorial 
design that fulfills both criteria within the limits of an acceptable maximum 
number of vignettes per respondent (symmetrical orthogonal design). If no 
such design exists, one also might take into consideration using a fractional 
factorial design where the levels of each variable do not appear with equal 
frequency (asymmetrical). A necessary and sufficient condition for retaining 
the feature of mutual uncorrelatedness in such cases is that the levels of one 
variable occur with each level of the other variables with proportional 
frequency (asymmetrical orthogonal design; cf. Addelman 1962:23). All 
fractional factorial designs share the common property that at least the 
¿»-coefficients of all main effects of the vignette variables can be estimated 
as mutually uncorrelated for each individual respondent.

A reduction of the sample size is achieved for fractional factorial 
designs only by confounding (aliasing) main effects with higher order 
interaction effects (cf. Alexander and Becker 1978:96; Gunst and Mason 
1991:48), assuming at the same time that the confounded interaction 
effects are negligible. A basic mathematical principle for constructing 
fractional factorial designs is the modular arithmetic applied to equation 
systems for the vignette variables (cf., for instance, Winer 1971:604-84; 
McLean and Anderson 1984). However, generating a fractional factorial 
design will be done in practice by using computer programs, such as 
SPSS (procedure “orthogonal design” ) or SAS (FACTEX procedure, 
%MktOrth macro, or %MktEx macro), or by consulting construction plans 
given by the literature (cf., for instance, Gunst and Mason 1991).5 An 
advantage of consulting the literature above using computer programs 
such as SPSS is that it often includes an overview about whether only
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main effects can be estimated uncorrelated (Resolution III designs); 
whether main effects can also be estimated uncorrelated with two-way 
interactions, whereby some two-way interactions are confounded with 
each other (Resolution IV designs); or whether main effects as well as 
two-way interactions can be estimated mutually uncorrelated (Resolution 
V designs; cf., for instance, Gunst and Mason 1991:48-9, 82-6; Kuhfeld 
2005:50). This information might be important at least in situations where, 
for a given problem and a given sample size, designs with different 
resolutions are available. A higher resolution is at least preferable in cases 
where two-way interactions cannot be excluded on the basis of theoretical 
a priori knowledge.

D-efficient designs. Another variant of quota designs can be realized by 
somewhat relaxing the classical requirement of perfect orthogonality. The 
reason for shifting the main focus is stated by Kuhfeld et al. (1994) as 
follows: “Orthogonality is not the primary goal in design creation. It is a 
secondary goal, associated with the primary goal of minimizing the var­
iance of the parameter estimates. Degree of orthogonality is an important 
consideration, but other factors should not be ignored” (p. 545). Since 
symmetrical orthogonal designs are balanced as well as orthogonal, they 
do not only represent the vignette universe most adequately but also mini­
mize the variance of the parameter estimates. By choosing such designs as 
reference, D-efficiency has been proposed as a standard measure of good­
ness that captures both characteristics—balance and orthogonality— 
simultaneously. D-efficiency can be calculated according to the following 
formula (cf. also Kuhfeld et al. 1994:547):

where No  denotes the set size of a design; \X' ■ X \denotes the information 
matrix of the vignette variables, including the intercept; and p  denotes the 
number of ¿»-coefficients, including the intercept that have to be estimated. 
If all vignette variables are standardized orthogonally coded (cf. Kuhfeld 
2005:65), then D-efficiency is scaled to range from 0 to 100 (cf. Kuhfeld 
et al. 1994:547, 549). Its maximum value of 100 will be reached only by 
symmetrical orthogonal designs. Hence, neither asymmetrical nor nonortho- 
gonal designs will ever reach a D-efficiency of 100. Now, sometimes 
no symmetrical orthogonal exists. Whereas asymmetrical fractional factorial 
designs sacrifice in such situations perfect balance to preserve orthogonality,

D-efficiency =  100 • (1)
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search algorithms for D-efficient designs try to find an optimally efficient 
solution between perfect balance and orthogonality. For this reason, most 
D-efficient designs deviate at least slightly from orthogonality.

A D-efficiency value measures the goodness of a design relative to a 
symmetrical orthogonal design. Even if such a design may be far away 
from being possible for a given research question, the value 100 provides 
at least a rough reference for the goodness of a generated design. This 
applies at least to research questions where only qualitative variables will 
be analyzed. If quantitative variables that are not standardized orthogon­
ally coded have to be included, then D-efficiency is no longer restricted to 
a maximum of 100, and the absolute value no longer has a clear interpreta­
tion. However, since calculating the relative D-efficiency measured by the 
ratio between the D-efficiency values of two competing designs does not 
require a special coding (although the same coding has to be used for both 
candidate designs), relative D-efficiency can be used in any case as a mea­
sure for the increase of efficiency due to preferring one design over 
another (cf. Kuhfeld et al. 1994:548-9). Since relative D-efficiency by 
itself is unaffected by the sample size, one can and should compare 
designs with different set sizes.

Finding a suitable D-efficient design requires search algorithms that 
can be provided only by computer programs such as JMP (“Custom 
Design” ),6 SAS (ADX “Optimal Design,” the OPTEX procedure, or the 
%MktEx macro), or the conjoint value analysis (CVA) module of Saw­
tooth Software. Because nonexhaustive search algorithms are used, a com­
puter program may fail to find the optimal design, even if the search 
algorithm is carried out several times (cf. Kuhfeld et al. 1994:547; Saw­
tooth Software 1997-2002:7-10). For this reason, the term D-efficient 
design is more appropriate than the also used term D-optimal design. A  
generated design’s D-efficiency will be reported at least on demand by the 
three computer programs mentioned above.7

Arguments for or Against Random and 
Quota Sampling in Factorial Surveys

In the following, the main arguments for or against random and quota 
designs are discussed. Besides basic questions of feasibility and applic­
ability, I address statistical issues of efficiency and power as well as meth­
odological issues of reliability and validity.
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Feasibility and Applicability
A main argument that can be raised against (simple) random designs 

refers to their feasibility (i.e., to the comparably higher efforts and costs 
that are required to produce the questionnaires). Drawing a unique vign­
ette sample for each potential participant will usually be done by computer 
programs (see, e.g., Rossi 1979:179; Rossi and Anderson 1982:41; Jasso 
2006:344) and, for that reason, should not be the problem. The same also 
applies to shuffling the vignettes before being presented to each respon­
dent, a procedure preventing that possible order effects could cause sys­
tematic bias to the estimators. However, the task becomes somewhat more 
complicated by the requirement that an individual vignette set should 
neither include constants nor vignette variables that are linear combina­
tions of other variables of the same vignette set. Especially small vignette 
sets, as well as variables with only few levels, are relatively often affected 
by such outcomes. Without correcting for such outcomes, one would lose 
the possibility of estimating respondent-specific ¿»-coefficients for each 
individual vignette variable.

Whereas the feasibility argument against (simple) random designs has 
been relaxed by using computer-assisted interviews, it remains important 
for written questionnaires used for mail surveys. Generating the written 
vignettes and integrating the vignette sets into the questionnaires is much 
more time-consuming for (simple) random designs than for quota designs. 
Hence, using (simple) random designs is, in such cases, the more expen­
sive choice. However, also by opting for a quota design, it is recom­
mended to rely not only on one but also on several questionnaires, each 
one containing another permutation of the selected vignette set. In this 
way, the likelihood that the answer behavior might be systematically 
biased by possible order effects will be reduced. The same will be reached 
by shuffling the vignettes if the vignettes will not be integrated into the 
questionnaire but printed on small cards attached to the questionnaire. 
However, in this case, there is a chance that individual vignettes will be 
lost or will not be sent back. All in all, one will reduce the probability that 
order effects might occur at all by asking respondents to have a look at 
least at several vignettes before starting to answer the questions.

One central limitation on the use of fractional factorial designs is that 
sometimes no design might exist for a reasonable maximum number of 
vignettes per respondent. While the set size for random samples is, from 
the statistical point of view, only restricted by the number of ¿»-coefficients 
to be estimated, fractional factorial designs are subject to much more
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restrictive mathematical rules of divisibility applied to the number of 
levels per vignette variable. In general, it is easiest to find a suitable frac­
tional factorial design in cases where all vignette variables have numbers 
of levels that are a power of 2 (cf. Gunst and Mason 1991:51) or at least 
possess an equal number of levels, including a power of it (cf. also 
McLean and Anderson 1984:26). Finding a feasible solution is much more 
difficult when each vignette variable has a different prime number of 
levels. In such situations, the required sample size often increases rapidly 
with each additional vignette variable. The same applies to research ques­
tions where the number of vignette variables and/or the number of levels 
per variable are relatively high.8

The applicability of quota designs has been relaxed by the availability 
of computer programs that allow generating D-efficient designs. A further 
option for enhancing the flexibility for constructing quota designs might 
sometimes also be to try different numbers of levels for some of the vign­
ette variables. In many factorial surveys, the choice of the number of 
levels of a vignette variable is, within the limits given by theory, some­
what arbitrary. Hence, choosing four instead of three levels, or four 
instead of five levels (i.e., choosing a prime number or a power of it that is 
more in line with the number of the levels of the other vignette variables), 
might allow finding a suitable quota design within the limits of a maximal 
possible set size without degrading the goals of the experiment (cf. Gunst 
and Mason 1991:51-2).

A last point to be discussed here is the problem of the applicability 
of quota designs in cases where the vignette universe includes logically 
impossible combinations of vignette characteristics. Studies about topics 
such as justice of income (cf. Jasso and Rossi 1977:642; Alves and Rossi 
1978:545) or the social status of families (cf. Nock 1982:104) often 
include education as well as occupation of fictitious vignette persons. 
Now, a minimum level of school education is required to be qualified for 
a certain occupation. If such restrictions exist, one is forced to exclude the 
respective combinations from the study. Removing impossible combina­
tions from (simple) random designs generally only increases the corre­
lation between affected variables, but by doing so, fractional factorial 
designs in general also lose orthogonality between variables that have not 
been affected as well as frequently between variables that have and have 
not been affected. For this reason, fractional factorial designs would not 
be applicable any longer. However, the greater flexibility of D-efficient 
designs might solve the problem. Although excluding impossible combi­
nations will always reduce efficiency of a chosen design, the loss will
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sometimes be very small for D-efficient designs (for an example, see 
Kuhfeld et al. 1994:551).

Statistical Issues: Efficiency and Power

Efficiency

The key for gaining insight into a design’s efficiency is the statistical 
formula for estimating standard errors in multiple regression analyses (for 
trivariate regression, see Thome 1990:166-7; for the general case, see also 
Fox 1991:7-8):

Kh)  = i =  1 /

k - 1)

E ( X i ; - X i )  
i =  1

p2
K Xy,X2,X3...Xk

(2)

where

• à(b\) is the estimated standard error of the unstandardized regression coef­
ficient of X\ ;

• — k — 1 ) is the estimated error variance o\—that is, the observed
i = \

error variance divided by the number of the remaining degrees of freedom 
(n refers to the set size, k to the number of estimated ¿-coefficients);

• {Xu ~  -^l)2 is the variation of Xi across vignettes 1 to n\ and
i = 1

• R2xr x 2  x 3 xk *s the coefficient of multiple determination of the explanatory 
variables to Xt on X\.

Formula (2) includes three components that are affected by the choice 
between different designs: the variation of the vignette variables, the coeffi­
cient of multiple determination among the vignette variables, and—at least 
to a certain degree— the estimated error variance.

The higher the variation o f the vignette variables and the lower the 
coefficient o f  multiple determination among the predictor variables, the 
lower, ceteris paribus, will be the estimated standard error of a respective 
unstandardized regression coefficient. If each respondent has to judge a 
unique random sample, then the variation of the vignette variables, as well 
as the coefficient of multiple determination among the predictor variables, 
will vary from respondent to respondent. Hence, the ¿»-coefficient of a
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respective vignette variable would be estimated for each respondent with 
a different standard error. As a consequence, a part of the observed varia­
tion of the regression coefficients across respondents would be nothing 
else than essentially not explainable sampling variation of the vignette 
samples (cf. also Hox, Kreft, and Hermkens 1991:501). Standardizing the 
vignette samples has the advantage that it eliminates this source of error. 
This point is especially important for small set sizes, where the regression 
coefficients are typically estimated with large errors.

Using a standardized vignette sample for all respondents avoids not 
only the problem of different standard errors but requires at the same time 
also choosing among all possible designs the most efficient one (i.e., a 
design that allows estimating ¿»-coefficients with the lowest standard 
errors). On the background of these considerations, it becomes already 
clear that quota samples are, for a given set size, more efficient than an 
average random sample.

Since fractional factorial designs ensure orthogonality, they reduce the 
coefficient of multiple determination among vignette variables to zero, 
whereby the right-hand term of the denominator of formula (2) reaches its 
maximum of 1. Search algorithms for D-efficient designs, on the other 
hand, try to optimize both components of the denominator simultaneously 
by relaxing the requirement for perfect orthogonality. The variation of a 
quantitative vignette variable, however, can only reach its maximum when 
its values are restricted to both extremes, whereby the ratio between both 
extremes would have to be quoted 1 to 1. Including only the lowest and 
the highest plausible values would be justified from a pure statistical point 
of view by the argument that two points are sufficient for estimating a lin­
ear relationship (cf. Kuhfeld et al. 1994:549). More levels are, from this 
point of view, only needed if the functional relationship is, for theoretical 
reasons, assumed to be nonlinear or if the relationship is at least unknown. 
However, it might be recommended sometimes for reasons of enhancing 
the similarity between the vignette world and the real world to include 
more than two levels of a quantitative variable into a vignette sample.

The third component of formula (2) is the estimated error variance a 2E, 
a term that depends at least partly on the set size and the number of predi­
ctor variables to be included in each separate regression equation. Choos­
ing a high number of vignette variables for a small set size will leave 
relatively few degrees of freedom for estimating the error variance. The 
higher the number of the remaining degrees of freedom (i.e., the more 
vignettes are judged by each respondent), the lower the standard error of a
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respondent-specific ¿»-coefficient. An advantage of random designs, espe­
cially over fractional factorial designs, is that the set size can be chosen 
freely within the limits of the respondent’s reasonableness. Thus, an aver­
age random sample of a higher set size may be statistically as efficient as 
or more efficient than a quota sample of a lower set size.

Our comparisons up to now did focus primarily on individual vignette 
sets and less on the combined vignette sample. Adding same quota sam­
ples will affect neither the degree of balance nor the mutual correlations 
among the vignette variables. For this reason, D-efficiency does not differ 
depending on whether it is computed for a single vignette set or across all 
vignettes included in a survey. Adding (simple) random designs, on the 
other hand, asymptotically reduces the mutual correlations among the 
vignette variables and increases the balance. Both characteristics affect 
D-efficiency. Although the mean D-efficiency of individual random sam­
ples will be comparably low, especially for relatively low set sizes, it will 
be much higher for the combined vignette sample. Which of both cases 
comes closer to reality depends on the heterogeneity of the respondents’ 
answer behavior (i.e., on unexplained context effects).9 Since unexplained 
context effects stemming from unmeasured respondent-level variables are 
very likely to occur in factorial surveys, random vignette designs can, as a 
rule, not fully benefit from their asymptotical characteristics.

The discussed relationship between set size and D-efficiency is illu­
strated in Figure 1 for a factorial survey consisting of four dichotomous 
vignette variables. Values for random designs are based on the more effi­
cient method of drawing without replacement. The greater efficiency of 
drawing without replacement applies especially to relatively high set 
sizes, where the probability of drawing a vignette twice or more would 
otherwise be much higher than for lower set sizes. The upper line in 
Figure 1 depicts, for each set size, the mean D-efficiency across 10 times 
500 combined sets (each of the 10 “ surveys” without unexplained interre­
spondent heterogeneity); the lower one depicts, for each set size, the mean 
of 500 separate sets. Differences between random and quota designs will 
be more and more leveled off by increasing the set size.

Power

A design’s D-efficiency is determined exclusively by the degree of 
orthogonality as well as the variation of the vignette variables. Hence, 
looking only at a design’s D-efficiency does not take into account the
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Figure 1
D-Efficiency of Random and Quota Designs Across 

Different Set Sizes (Four Dichotomous Vignette Variables)

D-Efficiency

Set Size

- A -  Quota

Random (mean across 10 x 500 combined sets) 

Random (mean of 500 separate sets)

impact of the set size as well as the number of respondents. Even if, for a 
given research question, a highly efficient design is available, the set size 
and/or the number of respondents might be too low for relatively weak 
effect sizes to become significant. In this case, lacking power might be 
responsible for disappointingly not rejecting Hq, although a respective
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effect does exist in the population (thereby committing a Type II error, 
also denoted by f3; cf. Cohen 1992:156).

The relationship between effect size, sample size, significance level a, 
and power 1 — yS is expressed by the following formula (cf. also Snijders 
and Bosker 1999:142):

effect size
standard error : (Zl-a +Zl - p) ,  (3)

whereby z i - a and z \-p  are z scores associated with the indicated a  and p 
values.

For decisions about the needed sample size, it is necessary to estimate 
the sample size that is required to achieve a specific power (say, 1 — ft — 
.80) for a given significance level (say, a — .05)and a hypothesized effect 
size b (a priori power analysis; cf. also Hox 2002:177). For two-level hier­
archical models, there are two kinds of sample sizes: the set size n and the 
sample size of the respondents N, with N ■ n being the total sample size of 
the vignettes. Carrying out a priori power analysis for multilevel analyses 
requires usually that quite a large number of parameters are assumed to be 
known (means, variances, and covariances of the predictor variables, as 
well as the variances and covariances of the random effects; cf. Bosker, 
Snijders, and Guldemond 2003:8). If this information can be gathered 
from earlier research or at least a reasonable guess can be made, one can 
use, for instance, PINT (cf. Bosker et al. 2003) for calculating the needed 
sample size for both levels of analysis. Otherwise, one should carry out a 
pilot study that may give an impression of the needed parameter values 
(cf. also Snijders and Bosker 1993:257).

Methodological Issues: Reliability and Validity
The last point to be addressed here is reliability and validity. Reliability 

depends on a design’s efficiency—the higher it is, the lower the estimated 
standard error (i.e., the more precisely a regression coefficient can be esti­
mated). Quota designs will be more reliable than random designs of the 
same set size if a relatively high number of unexplained context effects 
do exist— that is, if, besides the intercept, a comparably high number of 
slopes have to be estimated with their own random component (this condi­
tion does not allow a random design to profit so much from its asymptoti­
cal characteristics). The expected difference, under such circumstances, 
will be especially high for situations where for a relatively low set size, a
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very high D-efficient quota design exists. If, on the other hand, relatively 
few or no unexplained context effects will be expected and only a compar­
ably low D-efficient quota design exists for a given set size, then a random 
design will be the more reliable choice. The difference between both 
designs will, as already illustrated in Figure 1, all in all diminish with an 
increasing set size.

High reliability is only a necessary but not a sufficient condition for 
high validity. Even if a measurement turns out to be highly reliable, the 
empirical results might be biased and for that reason might be highly 
invalid. Although quota designs will reach higher reliability under the 
described circumstances, they are seen in general as a somewhat less 
valid choice than random designs. The reason for this view is the higher 
susceptibility of quota designs to biases caused by interaction effects 
between vignette variables that were not included. Fractional factorial 
designs are constructed by perfectly confounding (aliasing) main effects 
with higher order interaction effects. So, if nonnegligible unexpected 
interaction effects do exist and—due to the confounding pattern of the 
chosen design—cannot be estimated, not only the estimators of the consti­
tuting main effects of an interaction effect but also the estimators of the 
main effects with which the interaction is perfectly confounded will suffer 
from bias. Since higher order interaction effects will be found very rarely 
in social science (cf. Louviere 1988:40), such problems are in practice 
almost always restricted to two-way interactions between vignette vari­
ables. On the basis of these considerations, it should already be clear that 
if, for a given research question and a given set size, a higher resolution 
design exists, then it should be preferred over a lower resolution design. 
For D-efficient designs, the exact correlation structure between the terms 
for main and interaction effects is in general more complicated than for 
fractional factorial designs. Possible interaction terms have to be specified 
before the search algorithm starts.

An option to reduce the higher susceptibility of quota designs to possi­
ble biases might also be to increase the set size since, for higher set sizes, 
more interaction effects between vignette variables also can be estimated. 
Thus, increasing the set size will, all in all, reduce not only the differences 
between random and quota designs regarding their D-efficiency but also 
the differences with respect to potential biases. Another option that might 
help to prevent potential biases would be to use not only one, but, if they 
exist, several quota designs of the same efficiency that fulfill the require­
ments given by theory.
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Example Mulitilevel Analyses on 
the Basis of Simulated Data

The following sample analyses are carried out to illustrate the differences 
between random and quota designs to be expected on the basis of our statis­
tical and methodological considerations. For reasons of parsimony, we use 
again for our comparison a factorial survey consisting of four dichotomous 
variables. Since rather high unexplained interrespondent heterogeneity is 
very likely to be found in factorial surveys, our comparison will be based 
on a rather realistic situation where, besides the intercept, some slopes have 
to be estimated with their own random component. The intended compari­
son will be restricted to two different set sizes: At first, a relatively low set 
size will be chosen where a highly D-efficient quota design exists. This is 
given for a set size of 8 vignettes. Under these circumstances, the quota 
design should be more efficient than a random design of the same set size. 
Thus, the quota design should allow estimating the unstandardized regres­
sion coefficients with a lower standard error than the random design. As a 
consequence, t values computed as the ratio between ¿»-coefficients and 
their standard error should, ceteris paribus, be higher for the quota design. 
Due to its higher reliability, the quota design should also be more suited for 
detecting unexplained interrespondent heterogeneity. However, the compar­
ably lower power of the random design caused by its lower efficiency could 
at least be compensated by increasing the set size. But for such a situation, 
there will be also another quota design that might, despite its somewhat 
reduced D-efficiency, again turn out to be the more efficient choice. To see 
whether this assumption holds under the given circumstances, our compari­
son will be extended to a set size of 10 vignettes.

The advantages of quota designs are potentially endangered by their 
higher susceptibility to systematic biases that would reduce the validity of 
the results. In the following, it is assumed that vignette-level interaction 
effects do not exist. Besides ¿»-coefficients, their standard errors, and t 
values, farther measures that are central to multilevel analyses are also 
included in our statistical comparisons.

Data Basis

Producing Random and Quota Samples

The following comparison includes two quota and two random designs. 
Since the degree of D-efficiency depends on restrictions imposed by rules
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of divisibility, one should in general try to find a set size where a high 
D-efficient quota design exists. In our case, a half-fractional factorial design 
(set size 8) of Resolution IV has been selected. Since the design is symme­
trical and orthogonal, it reaches a D-efficiency of 100. Since no fractional 
factorial design exists for a set size of 10, a D-efficient design has been gen­
erated instead. The D-efficiency of the selected quota design produced with­
out specifying interaction terms is 97.032. The coding plans for both 
selected quota designs are documented in Table 1. To get a realistic survey 
size, each quota design has been replicated 500 times. The needed random 
samples of set sizes 8 and 10 have been generated by drawing without 
replacement. In this way, a comparably higher D-efficiency will be reached 
for the individual vignette sets than one would have reached by drawing 
with replacement. The D-efficiency of the generated random designs, based 
on the mean of the separate sets, is 82.826 for the lower set size and 89.027 
for the higher one. The values for the combined sets are 99.988 and 99.985, 
respectively.

In order to give an illustration for the chosen setting consisting of four 
dichotomous variables, let us assume that we were interested in Ingle- 
hart’s (1990) value change theory. Materialistic and postmaterialistic 
value orientations have to be measured according to Inglehart by a ranking 
procedure. Applying this technique for measuring both value orientations 
has been criticized by authors such as Biirklin, Klein, and Ru fi (1996) for 
its lacking theoretical adequacy. According to the latter authors, there is 
no trade-off relationship between value preferences such as “protecting 
freedom of speech” and “fighting rising prices” that would justify a rank­
ing procedure. An example vignette (see Table 2) may illustrate how both 
value orientations could be measured without the criticized restriction by 
asking respondents how much they would like to be governed by a party 
for which the listed goals are either not so important (code 0) or very 
important (code 1). By using a factorial survey, one also avoids the pro­
blem of response sets frequently observed for simple rating procedures, 
which have been criticized also for this reason by Inglehart (1997:116-7) 
as an unsuitable alternative for measuring both value orientations.10

Generating Data for the Simulated Answer Behavior

For factorial surveys, it is reasonable to expect unexplained context 
effects. Thus, we have to include into our regression equation, by which 
the fictitious respondents’ answer behavior will be simulated, not only b- 
coefficients but also random terms by which unexplained context influences
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Table 1
Coding Plans for the Selected Quota Designs

Vignette Number

Half-Fractional Factorial 
Design (Set Size 8 )a

D-Efficient 
Design (Set Size 10)b

X i X 2 x 4 Xi X 2 X ,

1 0 0 0 0 0 0 0 1

2 0 0 1 1 0 0 1 0

3 0 1 0 1 0 0 1 1

4 0 1 1 0 0 1 0 0

5 1 0 0 1 0 1 0 1

6 1 0 1 0 1 0 0 0

7 1 1 0 0 1 0 0 1

8 1 1 1 1 1 1 0 0

9 — — — — 1 1 1 0

1 0 — — — — 1 1 1 1

a. The means o f X \ to X 4  are 0.5, and the bivariate correlations among the variables are 0. 
The full factorial design can be divided into two half-fractional factorial designs o f Resolu­
tion IV by the following equation system (for a general introduction into modular arithmetic, 
cf. also W iner 1971 or M cLean and Anderson 1984):

x\ +  X2  +  * 3  +  X4  =  0 , mod2  

x\ +  X2  +  * 3  +  X4  =  1 , mod2

The confounding pattern can be found easily by replacing code 0 by -1  (effect instead of 
dummy coding) and multiplying the X  variables for computing the interaction terms (cf. also 
Jobson 1991:501).
b. The means of X \, X 2 , and X 4  are 0.5, and the mean of X3 is 0.4. The correlation between X\ 
and X 2  is 0.2, and the correlation between X \ and X 4 , as well as between X 2  and X 4 , is -0.2. 
All other bivariate correlations are 0.

can be modeled. By computing the judgments, we know at the same time 
the respondents’ true answers that will serve later on as a standard for our 
empirical comparisons. Since this contribution is concerned with comparing 
random to quota designs and not with examining theoretically expected 
cross-level interactions between respondent-level (Level 2) and vignette- 
level (Level 1) characteristics, no Level 2 characteristics have been included 
in our fictitious regression equation. The chosen multilevel regression equa­
tion is

Yij =  (0 +  Hoy) +  0.5 • Xuj +  1.5- X 2ij + (0.5 +  u3j) • X 3ij 
+  (1.5 +  U 4 j )  • X 4 i j  +  T i j ,
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Table 2
Vignette Example for Measuring Inglehart’s Value Orientations

Political Goal: For the Governing Party the Goal:

- Maintaining law and order in this nation - not so important
- Giving people more say in government decisions - not so important
- Fighting rising prices - very important
- Protecting freedom of speech - very important

I would like to be governed by such a party ...

I 1 I 2 I 3 | 4 | 5 | 6 | 7 | 8 | 9 |
not at all very strongly

where i indicates a respective vignette and j  a respective respondent. 
The intercept has a grand mean of 0. The grand mean values for the b- 
coefficients of the X  variables are 0.5, 1.5, 0.5, and 1.5, respectively. Each 
fictitious respondent has her or his individual intercept as well as her or 
his individual ¿»-coefficient for X \ and X 4  that differ by the random com­
ponents iiQj, iiyj, and ii4 j  from the respective grand coefficient. The error 
terms are distributed normally with a mean of 0. The standard deviations, 
also called tan for the respondent level, have been specified as 1.5, 0.8, 
and 1.2:

N(uoj\iloj — 0; To =  1-5), N(ii3j\ii3j =  0; r 3 =  0.8), =  0; r4 =  1.2). (5)

The error term rij for the vignette level is also normally distributed 
with a mean of 0 and a standard deviation of 1.5:

N { r i j \ r u  =  0-,(TR =  1 .5 ) .  (6)

To reduce the probability that the results of the simulation could be sta­
tistical outliers, not only 1 but 50 separate multilevel regressions were 
estimated for each design. For this purpose, both quota designs have sim­
ply been replicated. Since random designs differ from each other, it was 
necessary to generate the needed number of additional random designs. 
The needed number of additional variance components has been produced 
by using formulas (5) and (6). To minimize differences not genuine to a
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respective design, the same 50 respondent-level error terms have been 
used for all four designs. Due to the different set size, two sets of vignette- 
level error terms have been generated for each of the 50 separate regres­
sion models. To enhance the comparability, the vignette-level error terms 
of the lower set size 8 have also been used for the higher set size 10. The 
lacking two error terms have been added to each vignette set, whereby 
means and standard deviations remain unchanged.

Empirical Results of the Example Analysis
All in all, 50 separate multilevel regressions have been estimated in 

HLM 6 for each of the four designs. On this basis, we calculated the 
means and standard deviations of the estimates that will be compared 
across the four designs. The results are presented in Table 3.

The estimated ¿»-coefficients (first block; i.e., rows 1-5) are, on aver­
age for all four designs, very close to the expected values specified by 
formula (4). As long as no (unmodeled) vignette-level interaction effects 
are present, D-efficient designs also allow estimating regression coeffi­
cients without bias. The first systematic differences appear in the block 
for the estimated standard errors a  o f the ¿»-coefficients (second block). 
Due to its high efficiency, the fractional factorial design produces consis­
tently at least slightly lower estimated standard errors than the random 
design of the same set size. However, the same does not apply to the 
comparison between the D-efficient design and the random design of set 
size 10. Here, both designs turn out to have, on average, nearly the same 
estimated standard errors for the ¿»-coefficients. Thus, the random design 
of set size 10 can, under the given circumstances, already sufficiently 
profit from its asymptotical characteristics to catch up with the D-effi- 
cient design. As a consequence, the reliability of the ¿»-coefficients of the 
same vignette variables is also nearly the same for both designs. The 
increased power of using a higher set size is reflected by their lower esti­
mated standard errors. So, the random design of set size 8 produces the 
highest estimated standard errors, and both designs of set size 10 pro­
duce the lowest ones.

If the same ¿»-coefficient is estimated with a lower standard error, then 
the ? value will be larger, and the ¿»-coefficient will become significant 
earlier. For this reason, the observed ? values of a vignette variable’s b- 
coefficients should follow very closely the reversed order of their esti­
mated standard errors. Since both designs of set size 10 turned out to have 
nearly the same estimated standard errors for the ¿»-coefficients of the
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Table 3
Mean and Standard Deviation of Statistical Coefficients Across 50 Regressions, 

Each Estimated Separately for 500 Simulated Respondents

Random Design (Set Size 8 ) Quota Design (Set Size 8 ) Random Design (Set Size 10) Quota Design (Set Size 10)

Mean Standard Deviation Mean Standard Deviation Mean Standard Deviation Mean Standard Devia

b Intercept -0.004 0.046 - 0 . 0 0 2 0.046 0.003 0.041 0.004 0.035
bi 0.495 0.048 0.503 0.052 0.497 0.038 0.500 0.036
h 1.504 0.053 1.503 0.046 1.502 0.042 1.492 0.036
h 0.503 0.045 0.504 0.039 0.501 0.038 0.505 0.037
b4 1.506 0.055 1.493 0.044 1.495 0.047 1.495 0.047
a  (Intercept) 0.086 0.005 0.085 0 . 0 0 2 0.083 0 . 0 0 1 0.083 0 . 0 0 1

or(bi) 0.051 0 . 0 0 0 0.047 0 . 0 0 0 0.044 0 . 0 0 0 0.044 0 . 0 0 0

à(b2) 0.051 0 . 0 0 1 0.047 0 . 0 0 0 0.044 0 . 0 0 0 0.044 0 . 0 0 0

0.062 0.003 0.060 0 . 0 0 2 0.057 0 . 0 0 2 0.056 0 . 0 0 2

â(b4) 0.073 0 . 0 0 2 0.072 0 . 0 0 2 0.069 0 . 0 0 2 0.069 0 . 0 0 1

tIntercept -0.045 0.527 -0.023 0.536 0.034 0.492 0.051 0.416
h i 9.782 0.960 10.656 1 . 1 2 2 11.224 0.863 11.387 0.820
h i 29.754 1.053 31.814 1.005 33.957 0.939 33.975 0.882
h i 8.175 0.817 8.479 0.693 8.851 0.765 9.027 0.664
tb4 20.626 0.981 20.872 0.846 21.692 0.914 21.643 0.872
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same vignette variables, they also have nearly the same t values for the 
respective ¿»-coefficients (cf. third block). Lower t values are consistently 
observed for both designs of set size 8, whereby the random design pro­
duces the poorest results.

The mean values for the estimated standard deviations r  and a  of the 
error terms it and r  (cf. fourth block) are very close to the values specified 
in formulas (5) and (6). Larger differences between the designs become 
visible in the fifth block, where the results for the chi-square tests are docu­
mented. The chi-square test is used in HLM to test whether an estimated 
variance component r 2 of an error term it becomes significant. A chi-square 
value is computed by summing up across all respondents the squared devia­
tion of a respondent-specific computed ¿»-coefficient from its overall esti­
mate computed across all respondents divided by the respondent-specific 
estimated sampling variance of that ¿»-coefficient (i.e., by the square of the 
respondent-specific estimated standard error of that ¿»-coefficient; cf. also 
Hox 2002:43). As long as the estimated standard error for a ¿»-coefficient 
is—ceteris paribus—higher for a random design than for a quota design, the 
respective chi-square value will be lower. Thus, for a given set size, such 
a random design would be less able to discover unexplained respondent 
heterogeneity. Increasing the set size reduces the estimated standard errors 
for the ¿»-coefficients— a respective chi-square value becomes higher. On 
the background of these considerations, it becomes clear why the empirical 
results show the lowest chi-square values for the random design of set size 
8 and the highest ones for both designs of set size 10.

The average coefficients of multiple determination computed according 
to the simplified formulas proposed by Snijders and Bosker (1994:350-54; 
cf. also Snijders and Bosker 1999:99-105) are docum ented im m edi­
ately below the chi-square values. By including the four vignette vari­
ables, roughly 18.4 percent of the variance is explained at Level 1 for all 
except the D-efficient design. Thus, the reduced variation of one of the X  
variables and the nonzero correlations between some of the X  variables 
are together responsible for obtaining a comparably somewhat lower R\ 
of only 15.6 percent for the D-efficient design. Since no respondent-level 
variables have been included in the regression equation, the R 2  at Level 2 
should be 0. This expectation is only fulfilled by both quota designs.11 For 
the random designs, the explained Level 2 variance amounts to 2.6 and 
1.5 percent, respectively. In contrast to quota designs, where each indivi­
dual participant receives the same vignette set, at least slightly different 
vignette sets are used for random designs. Now, the differences between 
the means of the vignette variables of different vignette sets also cause
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variation in the average of the dependent variable between respondents. 
Including the vignette variables into regression analysis explains these dif­
ferences between respondents and, for that reason, increases the Level 2 
coefficient of determination. Thus, the fractional factorial design, all in 
all, produces the best estimators for both coefficients of determination.

A final look at the average number of iterations illustrates that, due 
to its more complex error structure caused by using a unique vignette set 
for each respondent, random designs need many more iterations until the 
maximum likelihood function for estimating multilevel regressions con­
verges. Nonetheless, the number of iterations is always well below 100, 
the default value given by HLM that should not be exceeded too much.

Conclusion

In contrast to conjoint analyses that are carried out almost exclusively 
on the basis of quota designs, it is common to use random designs for vign­
ette analyses. The pros and cons for preferring random designs over quota 
designs are usually not discussed at all. Most of the time, not even a hint 
can be found that quota designs could be an attractive alternative to ran­
dom designs. The purpose of this article was to contribute filling this gap.

From the point of feasibility, costs and efforts are seen as the central 
arguments against using random designs in representative survey research. 
The situation, however, has been relaxed at least for computer-assisted inter­
views. Whereas random samples can be generated for each desired set size, 
fractional factorial designs are frequently not available within the limits of 
a reasonable set size. Here, the situation has been relaxed since computer 
programs for generating D-efficient designs are available. From a statistical 
point of view, higher efficiency, higher reliability, and higher power are 
seen as main arguments for favoring quota designs over random designs. 
These arguments, however, apply mainly to situations where, for a relatively 
low set size, a highly D-efficient design is available and where, at the same 
time, relatively high unexplained interrespondent heterogeneity is expected.

Quota designs are seen generally as less valid than random designs. 
This argument, however, probably only applies to low-resolution frac­
tional factorial designs, where main effects are already confounded with 
two-way interaction effects, as well as to D-efficient designs, where a 
higher efficient design has been chosen over a lower efficient design that 
would have allowed estimating relevant interactions. From this point of 
view, one should think seriously about possible interaction effects. To
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reduce the higher susceptibility of quota designs to systematic bias, one 
should use at least several permutations of a selected design. For the same 
reason, it might be recommended that one should also use several quota 
designs of the same D-efficiency. Since vignette analysis is a complex 
measurement, it is recommended in any case to carry out a pretest before 
starting the main survey. If these considerations are taken seriously, then 
quota designs might become an attractive alternative to random designs. 
This, however, applies— as already stated—probably above all to situa­
tions where relatively small vignette sets have to be used and where, 
besides the intercept, a rather high number of slopes have to be estimated 
with their own random component.

Notes

1. The differences between vignette and conjoint analysis can be put down primarily to 
their origin as well as to the commonly used statistical methods for analyzing the data: While 
in social sciences, predominantly the term vignette analysis prevails, in economic sciences—  
particularly in marketing research— the term conjoint analysis dominates. Since marketing is 
primarily interested in the preference order for certain products, the dependent variable is 
mostly measured by a ranking task. Hence, the variable reaches ordinal scale level. Because 
marketing research is mainly interested in market choice behavior and market segmentation, 
standardized part-worth utilities computed on the basis of the unstandardized regression coef­
ficients from the individual respondents are frequently used for carrying out cluster analyses 
(although ordinary least squares [OLS] regression is inappropriate for rank-order data, it has 
been consistently found in a number o f studies that nonmetric estimation does not appear to 
give substantially better results than metric procedures; cf. Vriens 1995:64-5). For research 
questions in social science, strict rank orders are mostly unnecessary. Hence, the dependent 
variable is mostly measured by using a rating task. For that reason, the variable is assumed to 
reach metric scale level. To test hypotheses about the relationship between predictors (vign­
ette as well as respondent characteristics) and the dependent variable, researchers choose 
regression analysis most often in vignette analysis. Except for differences in terminology, in 
setting their main focus o f interest, and in selecting their mainly used procedures for analyzing 
data, in principle, there are probably no differences between vignette and conjoint analyses.

2. For conjoint analyses, a short discussion can be found in Green and Srinivasan 
(1978:109-11).

3. The main focus of this article is on research questions to assess the impact o f vignette 
and respondent characteristics on the respondent’s judgm ent behavior. Although such rela­
tionships are by far the most analyzed ones in the social sciences, it needs to be mentioned 
that factorial surveys also allow exploring the consequences o f the respondent-specific esti­
mates o f the vignette variables (cf. also Jasso 2006). However, since no simultaneous estima­
tion programs such as HLM are available for such cases, one would have to carry out in a 
first step a separate OLS regression for each individual respondent and use the resulting b- 
coefficients thereafter in a separate second step as predictors for a dependent respondent-level 
variable.
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4. The exact wording of Alves and Rossi (1978) is as follows: “W hile there might have 
been much to gain from standardizing the sample of vignettes, presenting to each respondent 
the same set, at the same time we would have lost the ability to generalize to the universe of 
all possible vignettes” (p. 544).

5. Further references for constructing balanced orthogonal fractional factorial designs 
can be found at http://support.sas.com/techsup/technote/ts723.html (2.12.2005).

6 . A restriction of JM P 5.1 is that it does not allow including quantitative variables with 
more than two levels into a vignette set.

7. Although D-efficiency is the most usual measure for a design’s efficiency, it is not the 
only one. Kuhfeld et al. (1994:546-7), for instance, also refer to A- and G-efficiency. All 
three of these criteria are convex functions o f the eigenvalues o f (X' ■ X )~ l and hence are 
usually highly correlated.

8 . A reasonable set size is, according to Jasso (2006:343), in the range o f 40 to 60 vign­
ettes. However, the recommended set size might also depend on respondent characteristics: 
Respondents of a representative national population sample may become fatigued or bored 
much earlier than respondents o f a highly motivated student sample. Another point is that the 
costs for a survey will rise with an increasing set size. Hence, Beck and Opp (2001:291) 
recommend for most representative surveys a set size in the range of 10 to 20 vignettes. The 
number of vignette variables should in general not exceed a maximum of six variables, each 
consisting of up to four or five levels (these upper limits can at least be found for conjoint 
analysis; cf. Green and Srinivasan 1978:108). If fewer vignette variables are included, one 
might also use more levels and vice visa. Finally, to get reliable estimates for the individual 
respondents, one should choose a set size at least 1.5 times higher than the number o f para­
meters to be estimated (cf. Sawtooth Software 1997-2000:7).

9. More precisely: depending on existing interrespondent heterogeneity that has to be 
modeled in multilevel analyses by additional random components, allowing respondents to 
have their own intercept and/or their own ^-coefficients that deviate “random ly” from the 
estimate of the respective grand mean. “ Randomness” in multilevel analyses can be regarded 
as representing the effects o f unmeasured Level 2 variables (respondent level) and hence may 
be interpreted as unexplained Level 2 variability (interrespondent heterogeneity; cf. also 
Snijders and Bosker 1999:45).

10. Empirically, however, it can be shown that Inglehart’s (1997) simple ranking procedure 
is no less susceptible to response sets than the simple rating procedure (Klein et al. 2004).

11. The mean of R \ is in both cases slightly negative (the exact values are -.00001 for the 
fractional factorial design and -.000005 for the D-efficient design). Because negative coeffi­
cients of determination do not make sense, the negative sign has been dropped in Table 3.
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