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Abstract 
The objective of this paper is to compare different time series methods for the short-
run forecasting of Business and Consumer Survey Indicators. We consider all 
available data taken from the Business and Consumer Survey Indicators for the Euro 
area between 1985 and 2002. The main results of the forecast competition are offered 
not only for raw data but we also consider the effects of seasonality and removing 
outliers on forecast accuracy. In most cases the univariate autoregressions were not 
outperformed by the other methods. As for the effect of seasonal adjustment methods 
and the use of data from which outliers have been removed, we obtain that the use of 
raw data has little effect on forecast accuracy. The forecasting performance of 
qualitative indicators is important since enlarging the observed time series of these 
indicators with forecast intervals may help in interpreting and assessing the 
implications of the current situation and can be used as an input in quantitative 
forecast models. 
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1. Introduction 

 

The amount of information provided by Business and Consumer Surveys concerning 

agents’ perceptions and expectations of their environment means that they are now 

recognised as a crucial instrument for gathering economic information in today’s 

ever-changing environment. Data obtained from Business and Consumer Surveys are 

often used in forecasting models and in testing different expectation schemes –

Kauppi et al (1996), Batchelor and Dua (1998), Mourougane and Roma (2002) and 

Nardo (2003)-. The speed with which the results of these surveys are made available 

and the wide range of variables included make them extremely useful for decision-

making -see Stuart (1985) for a deep discussion on the value of Business and 

Consumer Surveys-. The remarkable growth in business surveys in Europe since the 

early 1960s, and the need for them to be carried out and presented in a comparable 

way, led to the implementation of the Joint Harmonised EU Programme by the 

Commission in 1961. 

 

The present paper tries to compare different time series methods for the short-run 

forecasting of Business and Consumer Survey Indicators. Certainly, forecast 

competitions have been considered in the economic literature although focused in 

quantitative variables such as industrial production (Byers and Peel, 1995; Simpson 

et al, 2001), output growth and employment (Clements and Smith, 2000) and 

exchange rates (Clements and Smith, 2001; Boreo and Marrocu, 2002), as well as for 

general macroeconomic time series (Stock and Watson, 1999). On the other hand, as 

far as we know, forecast competitions have not been conducted for the case of 

qualitative variables. However, we consider that this kind of exercise can be useful to 
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analyse which forecasting method presents the best behaviour. The usefulness of this 

comparison is twofold. First, it will allow having the best qualitative forecast to 

evaluate whether a series will move up or down in all kind of processes which can be 

modified according to changing economic conditions (McIntosh and Dorfman, 1992) 

or to predict business cycle turning points (Diebold and Rudebusch, 1989). And 

second, it will guarantee that the best forecast could be used as an explanatory 

variable in quantitative forecast models (Biart and Praet, 1987; Parigi and Schlitzer, 

1995). 

 

The objective of this paper is therefore to compare different time series methods for 

the short-run forecasting of Business and Consumer Survey Indicators. This 

objective can be summarised in the following two questions: Is it possible to forecast 

qualitative indicators? And, if so, which is the best procedure for conducting such 

forecasts? In order to answer these questions, we considered all available data taken 

from the Business and Consumer Survey Indicators for the Euro area between, in the 

main, January 1985 and December 2002. The dataset analysed includes 38 indicators 

(33 of which are monthly and 5 quarterly) and 6 composite indicators.1 

 

First, we considered raw data in order to test the forecast accuracy of five different 

sets of models: autoregressions, ARIMA, Self-exciting threshold autoregressions 

(SETAR), Markov switching regime models and vector autoregressions (traditional 

VAR and also VAR models considering the joint evolution of different indicators). 

Some of the conclusions obtained are related to the high volatility presented by 
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indicators of this type, so that their statistical properties need to be taken into account 

when concluding. 

 

An additional aspect considered in this comparison of forecasts is related to the 

balance forecasts. As survey data are derived from qualitative questions and based on 

subjective evaluations, the results are usually presented in terms of balances, which 

show the difference between the positive and negative percentages of answers. Since 

it is this balance that analysts take into account and the information that is usually 

forecast, we examine whether it is better to forecast the balance directly or rather to 

forecast the negative and positive answers first and, then, calculate the balance. 

Additionally, we examine the composite indicators, which are calculated from 

business surveys in which answers are weighted to various questions in the survey. 

When looking at these aggregate indicators, we analyse whether it is preferable to 

forecast them directly or to obtain the forecast by weighting the forecasts for the 

different components. 

 

Finally, we consider the effects of seasonal adjustment procedures and the removal 

of outliers on forecast accuracy. In the case of seasonal adjustment procedures, we 

apply different methods to the indicators so as to obtain seasonally adjusted data 

(using Tramo/Seats - TS, X12 and Dainties - DA) and trend cycle estimation (using 

TS, X12 and Wavelets - WAV) in order to evaluate differences. In the case of 

outliers, we consider how their presence might affect the results by using TS to 

remove them (additive, transitory changes and level shifts) from the original series, 

and to what extent the effects of outliers should be removed each time a new 

observation is available. 
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The outline of the paper is as follows. The next section presents the models that are 

considered in the forecast competition. The database and the design of the forecast 

competition experiment is given in section 3. Section 4 offers the main results of the 

forecast competition not only for raw data but we also consider the effects of 

seasonality and removing outliers on forecast accuracy. Finally, section 5 concludes.   

 

2. Models for forecasting Business and Consumer Survey Indicators 

 

In order to assess alternative methods and models for forecasting Business and 

Consumer Surveys Indicators, we chose to focus on five different sets of model: 

autoregressions (AR), ARIMA, Self-exciting threshold autoregressions (SETAR), 

Markov switching regime models (MK) and vector autoregressions (traditional VAR 

and also VAR models considering the joint evolution of different indicators). 

 

Autoregressions 

The widely known autoregressive model (also known as the distributed-lags model) 

explains the behaviour of the endogenous variable as a linear combination of its own 

past values: 

 

tptpttt YYYY εφφφ ++++= −−− ...2211 . 

 

The key question is how to determine the number of lags that should be included in 

the model. For monthly -quarterly- data we considered different models with a 
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minimum number of 1 lag up to a maximum of 24 -8- (including all the intermediate 

lags), selecting the model with the lowest Akaike Information Criteria (AIC) value. 

 

ARIMA models 

Since the study conducted by Box and Jenkins (1970), ARIMA models have been 

widely used and their forecast performance has also been confirmed. The general 

expression of an ARIMA model is the following: 

 

( ) ( )
( ) ( ) tdD

s
s

s

s
s

t LL
LL

x ε
φ
θλ

∆∆Φ
Θ

= , 

( ) ( )Qs
Qs

s
s

s
s

s
s L...LLL Θ−−Θ−Θ−=Θ 2

21  is a seasonal moving average polynomial, 

( ) ( )Ps
Ps

s
s

s
s

s
s L...LLL Φ−−Φ−Φ−=Φ 2

21  is a seasonal autoregressive polynomial, 

( ) ( )q
q LLLL θθθθ −−−−= ...1 2

2
1

1  is a regular moving average polynomial, 

( ) ( )p
p LLLL φφφφ −−−−= ...1 2

2
1

1  is a regular autoregressive polynomial, λ is the 

value of the Box-Cox (1964) transformation, D
s∆  is the seasonal difference operator, 

d∆  is the regular difference operator, S is the periodicity of the time series under 

consideration, and tε  is the innovation assumed to behave as a white noise. 

 

In order to use models of this kind for forecasting, the proper model has to be 

identified (i.e., giving values to the order of the different polynomials, to the 

difference operator, etc.). For monthly data, we considered models with up to 12 AR 

and MA terms (4 in the case of quarterly data) selecting the model with the lowest 

AIC value. The statistical goodness of the selected model was also checked. 
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TAR models 

In the case of the ARIMA model the relationship between the current value of a 

variable and its lags is supposed to be linear and constant over time. However, when 

looking at real data it can be seen that expansions tend to be more prolonged over 

time than recessions (Hansen, 1997). In fact, in the behaviour of most economic 

variables there seems to be a cyclical asymmetry that linear models are unable to 

capture (Clements and Smith, 1999). A Self-Excited Threshold Autoregressive 

model (SETAR) for the time series Xt can be summarised as follows: 

 

tt uXLB +)·(   if Xt-k ≤ X, and 

tt vXL +)·(ζ    if Xt-k > X, 

 

where ut and vt are white noises, B(L) and )(Lζ are autoregressive polynomials, the 

value k is known as delay and the value X is known as threshold. This two-regime 

self-exciting threshold autoregressive process is estimated using monthly and 

quarterly data for each indicator and the Monte Carlo procedure is used to generate 

multi-step forecasts. The delay values selected are those that minimise the sum of 

squared errors among values between 1 and 12 for monthly data and 1 and 4 for 

quarterly data. The values of the threshold are given by the variation of the variable 

being analysed. 

 

Markov switching regime models 

Threshold autoregressive models are perhaps the simplest generalisations of linear 

autoregressions. In fact, these models were built on developments of traditional 

ARMA time series models. As an alternative to these, time series regime-switching 
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models assume that the distribution of the variable is known conditional on a 

particular regime or state occurring. When the economy changes from one regime to 

another, a substantial change occurs in the series. Hamilton (1989) presented the 

Markov regime-switching model in which the unobserved regime evolves over time 

as a 1st-order Markov process. The regime completely governs the dynamic 

behaviour of the series. This implies that once we assume conditions on a particular 

regime occurring, and assume a particular parameterisation of the model, we can 

write down the density of the variable of interest. However, as the regime is strictly 

unobservable, statistical inferences have to be drawn concerning the likelihood of 

each regime occurring at any point in time. So, we need to obtain the transition 

probabilities from one regime to the other. 

 

Three approaches have been adopted in estimating these models (Potter, 1999). First, 

Hamilton (1989) developed a non-linear filter to evaluate the likelihood function of 

the model and, then, he directly maximised the likelihood function. Second, in a later 

article, Hamilton (1990) constructed an EM algorithm which proves particularly 

useful should all the parameters switch. Finally, Albert and Chib (1993) developed a 

Bayesian approach to estimation. 

 

Here, we employ a Markov-switching threshold autoregressive model (MK-TAR) in 

which we are able to allow for different regime-dependent intercepts, autoregressive 

parameters, and variances. The estimation of the models is carried out by maximum 

likelihood using the Hamilton (1989) filter2 together with Kim's smoothing filter 

(1994). 
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Having estimated the probabilities of expansion and recession, we could then 

construct the following model for the time series Xt: 

 

tt uXLB +)·(   if P[Expansion/Xt-k]≤ P, and 

tt vXL +)·(ζ    if P[Recession/Xt-k]>P, 

 

where, as in the SETAR models, ut and vt are white noises, B(L) and )(Lζ are 

autoregressive polynomials, the value k is the estimated delay and the value P is the 

estimated threshold3. The selected delay values are those that minimise the sum of 

squared errors for values between 1 and 12 for monthly data and 1 and 4 for 

quarterly data. The values of the threshold are given by the variation of the 

probability. 

 

VAR models 

In these models, each variable depends on a certain number of lags of the other 

variables under analysis (Sims, 1982). The idea is that the positive, neutral and 

negative answers to each question can be considered jointly. Moreover, as the sum of 

the percentages of positive (P), neutral (E) and negative (M) answers would, by 

definition, total one hundred, this restriction could also be introduced in the model 

improving its forecasting accuracy: 
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In order to use models of this kind for forecasting, the proper model must first be 

identified (i.e., give values to the number of lags p). For monthly data, we considered 

models with up to 24 lags (8 in the case of quarterly data), selecting the model with 

the lowest AIC value. The statistical goodness of the selected model was also 

checked. 

 

3. Database and design of the forecast competition experiment  

 

The immediate relevance of the results of harmonised business and consumer 

surveys is one of their main properties, given that they are published shortly after the 

termination of the month to which they refer. The survey results are presented either 

in the form of balances for particular questions or as synthetic indicators. They are 

able to describe the panorama of the current economic situation much quicker than 

the quantitative indicators and the macroeconomic magnitudes from national 

accounts, though the latter tend to be more precise in their descriptions.  

 

The European Commission draws up and publishes a wide range of indicators 

calculated on the basis of the results sent in by more than 40 institutes in 25 countries 

in the framework of the Joint Harmonised EU Programme of Business and Consumer 

Surveys. Particular attention is paid to indicators for the Euro area. The EU 

Programme currently includes surveys for industry, construction, the retail trade, 

services, investment and consumers. 
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For our analysis, we considered all the information available for the Business and 

Consumer Survey Indicators in the Euro area. The dataset analysed includes 38 

indicators (33 of which are monthly and 5 quarterly) and 6 composite indicators. The 

starting date of these indicators differs but most of them begin in January 1985 (or in 

the first quarter of 1985). The latest period to be included in the analysis is December 

2002 (or the final quarter of 2002). More details on the dataset can be found in Table 

1. 

 

Since the objective of the paper was to assess alternative methods and models for 

forecasting Business and Consumer Survey Indicators, we initially considered raw 

data (in all cases, non seasonally adjusted levels of each category of the variables 

were used) in order to test the forecast accuracy of the five different sets of models 

presented in the previous section.  

 

In order to evaluate the relative forecasting accuracy of the models, each model was 

estimated for all the indicators included up to 2000.12 (or 2000.IV for quarterly 

indicators) and forecasts for 1, 2, 3, 6 and 12 months (or 1, 2, 4 quarters) in the future 

were computed. The model specifications are based on information up to 2000.12 or 

2000.IV and, thereafter, the models were re-estimated in each month or quarter and 

the forecasts were computed with these estimation results. Given the availability of 

actual values up to 2002.12 or 2002.III or 2002.IV, we were able to compute the 

forecast errors for each indicator and method in a recursive way (i.e., for the 1 month 

forecast horizon, 24 forecast errors were computed for each indicator). In order to 

summarise this information, the Root Mean Square Error (RMSE) and Mean 
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Absolute Percentage Error (MAPE) were computed. These values provide useful 

information for analysing the forecast accuracy of each method, and enabled us to 

rank the methods according to their values. 

 

Before showing the results of this comparative exercise, it should be stressed that the 

statistical properties of the Business and Consumer Survey Indicators differ 

substantially from those of the main macroeconomic variables (GDP, CPI, Industrial 

Production, Industrial Producer Prices, etc.). In Table 2, the variation coefficient is 

shown. It is worth noting that the variation coefficient values are extremely high for 

some indicators. This can be interpreted as evidence of the high volatility of the 

indicators and, with this in mind, the forecast accuracy of the methods considered 

can be expected to be lower than that for other macroeconomic variables. 

 

A further result of interest is that if we examine the average values of the variation 

coefficient for categories (i.e., positive answers, negative answers, balance, etc.), the 

highest value corresponds to the balance. A possible explanation for the higher 

variance of the balance is purely statistical. The variance of the balance can be 

decomposed as follows: 

 

),(·2)()()()( mpCovmVarpVarmpVarbVar −+=−= . 

 

So, if the covariance between positive and negative answers is negative (i.e. they 

move in opposite directions), the variance of the balance would be higher than the 

variance of the other two components. In 87% of cases, the sign of this covariance is 

negative, so the variance of the balance is higher (in most cases) than the other two 
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components (Table 3a). To test whether it was significantly higher, we applied a test 

of equality of variances between the balance and the other two components. In 76% 

of the cases, the null hypothesis of equality of variances was rejected (Table 3b). 

 

Additionally, we computed some of the most commonly used methods to test the unit 

root hypothesis: the augmented Dickey and Fuller test (1979), the Phillips and Perron 

test (1988) and the Kwiatkowski, Phillips, Schmidt and Yongcheol test (1992) (Table 

4a). The Perron test (1989) was also adapted so as to allow for different types of 

structural change: in the level (crash model) or in the slope (breaking trend) (Table 

4b). Since the variables under consideration can only take values between 0 and 100, 

a priori we would expect most of them to be I(0). The most striking result is that in 

many cases the variables are eventually considered to be I(1) - 85% if the structural 

break is not considered and 52% when it is 4. 

 

4. Results: forecast accuracy comparison 

 

4.1. Main results for raw data 

 

In Table 5 we present a summary of the recursive forecasts of the main indicators 

(Economic Sentiment -v1-, Industrial Confidence -v2-, Consumer Confidence -v12-, 

Construction Confidence -v28-, Retail Trade Confidence -v33- and Services 

Confidence -v39- Indicators) for the different models. The table refers to raw data. 

For each indicator, the best model is highlighted. 
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Before analysing the results, it should be pointed out that composite indicators are 

usually calculated from business surveys. For example, the Economic Sentiment 

Indicator is obtained by weighting the answers to different questions on the survey. 

When dealing with these aggregates, there are two possible courses of action: 

forecasting them directly or obtaining the forecast by weighting the forecasts for the 

different components. To the best of our knowledge, no research has been 

undertaken in order to determine which method provides the best results. Therefore, 

we chose to forecast composite indicators in two ways: what we call a direct 

(computation) method and by using the forecasts of the components, an indirect 

(computation) method. 

 

Among the conclusions that can be extracted from Table 5, we would like to point 

out the following. First, indirect, as opposed to direct, methods seem to perform best. 

Thus, it would  appear to be better to forecast these indicators from the forecasts of 

the components than directly. Second, among the direct methods, the AR model 

outperformed the rest of the models in almost all cases. By contrast, the ARIMA and 

TAR models were never found to be the best forecasters. Third, among the indirect 

methods, the AR and VAR models were the ones that provided the lowest RMSE 

(with the exception of the Economic Sentiment Indicator, where the ARIMA model 

outperformed the rest of the models). Once again, the TAR model presented the 

highest values for the RMSE. 

 

As for the results of the forecast comparison for the remaining indicators, details 

figures are shown in Table 6, in which the average RMSE is shown for each type of 

answer and where the best model is highlighted in each case. The main conclusions 
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of this analysis can be summarised as follows. As far as the forecast accuracy of the 

different methods is concerned, in most cases the univariate autoregressions are not 

outperformed by the other methods. In fact, only the forecast errors from the VAR 

and Markov models were lower than those obtained from AR models in some cases. 

It should also be stressed that unrestricted VAR models usually work better than 

restricted VAR models and that the errors displayed by the ARIMA, TAR and VAR 

models for different indicators were generally higher. 

 

Furthermore, taking into account that the variables considered (positive, neutral and 

negative answers but not the balance) can only take values between 0 and 100, the 

forecast errors are quite high even in the case of the best model. As expected, the 

forecasts errors increased for longer horizons in most cases and, in general, variables 

corresponding to questions with a higher number of possible answers were better 

forecast than the rest. In most cases, the size of the errors was higher for the balance 

than for the components (this is related to the higher volatility of these variables), 

which is a common result for most composite indicators (one notable exception is the 

Economic Sentiment Indicator). 

 

A further aspect to be considered is related to that of balance forecasts. As survey 

data are derived from qualitative questions and based on subjective evaluation, the 

results are usually presented in terms of balances, which show the difference between 

positive and negative percentages of answers. The balance is the information that 

analysts take into account and the information that is usually forecast. But, is it better 

to forecast the balance directly or to forecast negative and positive answers and then 

calculate the balance? In order to answer this question we replicated the forecasting 
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comparison described above, but on this occasion we computed the balance from the 

forecasts of negative and positive answers using the AR, ARIMA, TAR and VAR 

models. The results (in the last block of Table 6, referred to as ‘b’) show that it is 

usually better to forecast the balance from the forecasts of positive and negative 

answers rather than by doing it directly, and that the AR model outperforms the rest 

of the models in almost all cases. 

 

4.2. The effects of seasonality on data revision and on forecast accuracy 

 

Seasonal adjustment methods are usually applied to these indicators. However, an 

interesting point that has not been analysed to date is the extent to which the method 

chosen for seasonal adjustment - TS, X12, DA, WAV, among others - might affect 

the values of the series under consideration. In order to remedy this situation, we 

applied all these methods of seasonal adjustment so as to obtain seasonally adjusted 

data (using TS, X12 and DA) and trend cycle estimations (using TS, X12 and WAV) 

for a number of qualitative indicators 5. From the results shown in Table 7, several 

conclusions can be drawn: 

 

First, TS and X12 results were very similar but DA results (seasonal adjustment) and 

WAV results (trend cycle-estimation) differed greatly. Specifically, differences were 

found to be greater in trend-cycle estimations than in seasonal adjustments (Table 7a 

and 7b). 
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Second, in order to analyse how the seasonal adjustment method chosen affected the 

revision of the series, seasonally adjusted data and trend-cycle estimations were 

computed in a recursive way adding one more observation from 2001.12 to 2002.12. 

The results (see Table 7c and 7d) showed that:  

 

• There was no relationship between the size of the revision in a given 

observation and the number of time periods between this observation and the 

last observation available. 

• There were great differences in the size of revision for the different variables 

in each seasonal adjustment method considered. 

• There were no revisions of seasonally adjusted data using the DA method. 

• TS revisions of seasonally adjusted data were greater than X12 revisions. 

• Trend-cycle estimations using WAV method showed dramatic revisions. 

• TS revisions of trend-cycle data were greater than X12 revisions. 

 

Third, the choice of seasonal adjustment method was found to affect forecasts. Thus, 

we were  interested in determining whether it was better to forecast raw data and then 

apply a seasonal adjustment method or not. As pointed out by Commission staff, the 

information from Business and Consumer Surveys has little seasonality, and, 

therefore the results should not vary significantly. To confirm this, we computed the 

Kruskal-Wallis test (also in Table 7e) for all the qualitative variables in order to 

verify the importance of seasonality. In almost 87% of cases, the null hypothesis of 

non-seasonality was not rejected, that is, most series did not present a seasonal 

component. This, it would seem, despite the large number of studies discussing this 

Page 17 of 106

Editorial Office, Dept of Economics, Warwick University, Coventry CV4 7AL, UK

Submitted Manuscript

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 18

matter, that too much attention has been given to this issue in the context of Business 

and Consumer Surveys. 

 

4.3. The effects on forecast accuracy of removing outliers using TS  

 

The presence of outliers may well affect the results discussed in the previous 

sections. Therefore, TS can be used in order to remove the outliers from the original 

series. TS uses an automatic procedure to detect and eliminate outliers from a series. 

Three different types of outliers are considered here: Additive outliers (AO), 

Transitory changes (TC) and Level shifts (LS). 

 

In Table 8a the variation coefficient for the qualitative variables from the industrial 

survey and the balances for the other surveys are shown. From these statistics, it can 

be seen that for some series, TS did not detect any outliers (i.e., the Economic 

Sentiment Indicator). However, in most cases, the volatility was substantially lower, 

although in some the value of the variation coefficient increased (although the 

standard deviation was lower, the value of the mean –which is clearly affected by the 

presence of extreme values- was even lower). As before, we now computed the value 

of the covariance between positive and negative answers and we tested to see if the 

variance of the balance differed from that of positive or negative answers. As 

observed in Table 8b, in 95% of the cases (as opposed to 87% when seasonality was 

not taken into account), the covariance was negative, so that the null hypothesis of 

equality of variances between the balance and the other two components (positive 

and negative answers) was rejected in 82% of the cases (compared with 76%) -see 

Table 8c-. Finally, the results on the unit root tests did not change at all when the 
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outliers were removed from the variables, so that the main results remained 

unchanged.  

 

Using these data, we repeated the comparison of forecasts as in the previous sections. 

The main results are shown in Table 8d. The main conclusions to be drawn from this 

analysis can be summarised as follows: First, RMSE values were the same or lower 

in nearly all variables when using data from which the outliers had been removed 

using TS. However, there were differences between models: while in the AR, 

ARIMA, TAR and Markov models the values of RMSE were markedly lower than 

those for raw data, the results for VAR (unrestricted and restricted) were, some 

times, worse. Finally, the VAR models consisting of different indicators performed 

much better when the outliers were removed. 

 

Second, when comparing the RMSE for the balance computed from forecasts with 

positive and negative answers, we observed that the results for the models analysed 

(AR, ARIMA, TAR and VAR) - once the outliers had been removed - were, in most 

cases, higher than those for raw data. Similarly, when the composite indicators were 

computed from forecasts based on their components, here again the models 

performed worse once the outliers had been removed. 

 

A practical issue that needs to be borne in mind when forecasting these series in real 

time concerns the effects of incorporating new observations on outlier detection 

using TS. In other words, is it necessary to remove the effects of outliers each time a 

new observation is available? To analyse this, we adopted a similar approach to that 

regarding the effects of seasonal adjustment procedures. In order to evaluate the 
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effects of incorporating new observations, we identified the time periods during 

which an outlier is found in a recursive way by adding one more observation from 

2001.1 to 2002.12. The results of this analysis are shown in Table 9. From these 

results, we can conclude that the number and type of outliers clearly depend on the 

available sample. Although there was some ‘persistence’ in the moment and type of 

detected outliers, some significant changes in the results might also be recorded 

using TS once an additional observation is included (sometimes due to changes in the 

underlying model, but also to the dynamics of the series itself). So, if we take into 

account the results regarding the forecast accuracy of the various models, and 

although this has the effect of increasing the computational cost, it would appear to 

be necessary to apply the TS to remove the effects of outliers each time an additional 

observation becomes available. 

 

In addition, we should stress that when comparing the various seasonal adjustment 

methods, the TS and X12 results were very similar, but the DA (seasonal adjustment) 

and WAV results (trend cycle-estimation) presented marked differences. In fact, 

these differences were greater for the trend-cycle estimations than the seasonal 

adjustments, whereas there were considerable differences in the size of revision for 

the different variables for each seasonal adjustment method considered. 

 

Additionally, after removing the outliers using TS the forecast accuracy of the 

various methods was similar to that observed with raw data. The number and type of 

outliers identified with TS clearly depends on the available sample. Although there is 

some ‘persistence’ in the moment and type of detected outliers, significant changes 

can be reflected in the results. 
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5. Conclusions 

 

The objective of this paper is to compare time series methods for the short-run 

forecasting of Business and Consumer Survey Indicators. We analysed a dataset for 

the Euro area, which included 38 indicators (33 of which were monthly and 5 

quarterly) and 6 composite indicators, mostly between January 1985 and December 

2002. In order to test the forecast accuracy, we used five different sets of models: 

autoregressions, ARIMA, Self-exciting threshold autoregressions, Markov switching 

regime models and vector autoregressions (traditional VAR and also VAR models 

considering the joint evolution of different indicators).  

 

As far as the forecast accuracy of the different methods is concerned, in most cases 

the univariate autoregressions were not outperformed by the other methods. In fact, 

only the forecast errors from the VAR and Markov models were, in some cases,  

lower than those from the AR models. It should also be stressed that unrestricted 

VAR models usually worked better than restricted VAR models and that the errors 

displayed by the ARIMA, TAR and VAR models comprising a range of indicators 

were generally higher. However, the size of the forecast errors was high even in the 

case of the best model. 

 

Interestingly, both in the case of composite indicators and indicators which belong to 

a balance category, our results show that it is preferable to forecast them indirectly. 

As for the effect of the seasonal adjustment methods that are typically applied to 

these indicators, we used a range of methods (TS, X12, Dainties and Wavelets) that 
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suggest that the use of raw data has little effect on forecast accuracy.  A similar 

conclusion is obtained when using data from which outliers have been removed 

using TS, as here again forecast errors were found to be similar for nearly all 

variables. 
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Notes: 

 

1.  More details on the dataset can be found in Table 1. 

2.  The Hamilton filter is an iterative procedure which provides estimates of the 

probability that a given state is prevailing at each point in time given its previous 

history. These estimates are dependent upon the parameter values given to the 

filter. Running the filter through the entire sample provides a log likelihood value 

for the particular set of estimates used. This filter is then repeated to optimise the 

log likelihood of obtaining the MLE estimates of the parameters. With the 

maximum likelihood parameters, the probability of state 0 at each point in time is 

calculated and these are the probabilities of recession and expansion. 

3.  An alternative approach would have consisted in imposing the value of P and k 

instead of estimating them. These models are known as Markov Switching 

Autoregressive Models (MS-AR) and, in general, the values of P are 0.7 or 0.8 

and the values of k, 0 or 1. 

4.  It is also interesting to note that all the tests only coincide in 10 series. 

5.  The seasonality analysis was conducted for variables v1, v2, v3p, v3e, v3m, v3b, 

v4p, v4e, v4m and v4b. 
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Table 1. List of Business and Consumer Surveys Indicators for the Euro area 
 

Description Freq. Last obs Obs. Categories 
v1 Economic Sentiment Indicator month jan-85 dec-02 216       
v2 Industrial Confidence Indicator (v7+v4-v6)/3 month jan-85 dec-02 216       
v3 Production trend observed in recent months month jan-85 dec-02 216 P E M     B 
v4 Assessment of order-book levels month jan-85 dec-02 216 P E M     B 
v5 Assessment of export order-book levels month jan-85 dec-02 216 P E M     B 
v6 Assessment of stocks of finished products month jan-85 dec-02 216 P E M     B 
v7 Production expectations for the months ahead month jan-85 dec-02 216 P E M     B 
v8 Selling price expectations for the months ahead month jan-85 dec-02 216 P E M     B 
v9 Employment expectations for the months ahead month jan-85 dec-02 216 P E M     B 
v10 New orders in recent months quarter 1985-I 2002-IV 72 P E M     B 
v11 Export expectations for the months ahead quarter 1985-I 2002-IV 72 P E M     B 
v12 Consumer Confidence Indicator (v14+v16-v19+v23)/4 month jan-85 dec-02 216       
v13 Financial situation over last 12 months month jan-85 dec-02 216 PP P E M MM N B 
v14 Financial situation over next 12 months month jan-85 dec-02 216 PP P E M MM N B 
v15 General economic situation over last 12 months month jan-85 dec-02 216 PP P E M MM N B 
v16 General economic situation over next 12 months month jan-85 dec-02 216 PP P E M MM N B 
v17 Price trends over last 12 months month jan-85 dec-02 216 PP P E M MM N B 
v18 Price trends over next 12 months month jan-85 dec-02 216 PP P E M MM N B 
v19 Unemployment expectations over next 12 months month jan-85 dec-02 216 PP P E M MM N B 
v20 Major purchases at present month jan-85 dec-02 216 PP E MM N     B 
v21 Major purchases over next 12 months month jan-85 dec-02 216 PP P E M MM N B 
v22 Savings at present month jan-85 dec-02 216 PP P M MM N   B 
v23 Savings over next 12 months month jan-85 dec-02 216 PP P M MM N   B 
v24 Statement on financial situation of household month jan-85 dec-02 216 PP P E M MM N B 
v25 Intention to buy a car within the next 2 years quarter 1990-I 2002-IV 52 PP P M MM N   B 
v26 Purchase or build a home within the next 2 years quarter 1990-I 2002-IV 52 PP P M MM N   B 
v27 Home improvements over the next 12 months quarter 1990-I 2002-IV 52 PP P M MM N   B 

(Continues next page) 
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Description Freq. First obs Last obs Obs Categories 
v28 Construction Confidence Indicator (v30+v31)/2 month jan-85 dec-02 216         
v29 Trend of activitiy compared with preceding months month jan-85 dec-02 216 P E M       B 
v30 Assessment of order books month jan-85 dec-02 216 P E M       B 
v31 Employment expectations for the months ahead month jan-85 dec-02 216 P E M       B 
v32 Price expectations for the months ahead month jan-85 dec-02 216 P E M       B 
v33 Retail Trade Confidence Indicator (v34-v35+v37)/3 month jan-86 dec-02 204         
v34 Present business situation month jan-85 dec-02 216 P E M       B 
v35 Assessment of stocks month jan-85 dec-02 216 P E M       B 
v36 Orders placed with suppliers month feb-85 dec-02 215 P E M       B 
v37 Expected business situation month jan-86 dec-02 204 P E M       B 
v38 Employment month abr-85 dec-02 213 P E M       B 
v39 Services Confidence Indicator (v40+v41+v42)/3 month abr-95 dec-02 93         
v40 Assessment of business climate month abr-95 dec-02 93 P E M       B 
v41 Evolution of demand in recent months month abr-95 dec-02 93 P E M       B 
v42 Evolution of demand expected in the months ahead month abr-95 dec-02 93 P E M       B 
v43 Evolution of employment in recent months month abr-95 dec-02 93 P E M       B 
v44 Evolution of employment expected in the months ahead month jan-97 dec-02 72 P E M       B 

The letters refer to positive answers (pp and p), neutral answers (e), negative answers (mm and m), non answers (n), balance (b) and composite indicators (i). 
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Table 2. Variation coefficient for the Business and Consumer Surveys 
Indicators 
 

 Average variation coefficient 
 Monthly indicators Quarterly  indicators 

pp 27.22 13.90 
p 31.33 15.10 
e 16.03 4.38 
m 33.75 17.02 

mm 33.76 2.55 
n 19.52 36.44 
b 348.47 118.68 
i 67.26  

 
 
Table 3a. Analysis of the sign of the covariance between positive and negative 
answers 
 

Covariance Negative sign Positive sign TOTAL 
Month 28 5 33 
Quarter 5 0 5 
TOTAL 33 5 38 
  
Covariance Negative sign Positive sign TOTAL 
Month 74% 13% 87% 
Quarter 13% 0% 13% 
TOTAL 87% 13% 100% 

 
 
Table 3b. Tests of equality of variance 
 

H0: Equality of variance 
HA: Non-equality of variance 

 
Statistic Rejection of the Null Non-rejection of the Null TOTAL

Month 27 6 33 
Quarter 2 3 5 
TOTAL 29 9 38 
  

Statistic Rejection of the Null Non-rejection of the Null TOTAL
Month 71% 16% 87%
Quarter 5% 8% 13%
TOTAL 76% 24% 100%
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Table 4a. Results of the tests for unit root hypothesis. Unit root tests without 
structural break. (I(1) in 85% of the cases) 
 

Order Variable ADF PP(k=4) PP(k=8) KPSSa KPSSb 
I(0) pp 3 1 4 9 6 

 p 4 4 13 18 10 
 e 1 6 4 16 5 
 m 4 3 12 21 9 
 mm 1 8 3 
 n 1 5 1 1 4 
 b 4 9 11 24 10 
 v1 1 1 
 v2 1 1 1 1 
 v12 1  
 v28 1  
 v33 1 

Total I(0)  18 28 47 101 50 
I(1) pp 9 11 8 3 6 

 p 23 23 14 9 17 
 e 25 20 22 10 21 
 m 23 24 15 6 18 
 mm 12 12 11 4 9 
 n 11 7 11 11 8 
 b 24 19 17 4 18 
 v1 1 1 1  
 v2 1  
 v12 1 1 1 1 
 v28 1 1 1 1 
 v33 1 1 1 1  

Total I(1)   131 121 102 48 99 
Total general  149 149 149 149 149 

ADF: augmented Dickey and Fuller test (1979); PP: Phillips and Perron test (1988); KPSS: 
Kwiatkowski, Phillips, Schmidt and Yongcheol test (1992). 
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Table 4b. Results of the tests for unit root hypothesis. Perron’s (1989) test with 
structural break. (I(1) in 52 % of the cases) 
 

Order Variable Crash model (a) Crash model (b) Breaking trend (a) Breaking trend (b)
I(0) pp 4 4 5 5 

 p 13 12 13 12 
 e 17 17 17 17 
 m 14 13 12 13 
 mm 5 4 4 4 
 n 9 8 9 9 
 b 11 11 10 10 
 v1     
 v2 1 1 1 1 
 v12     
 v28     
 v33     

Total I(0)  74 70 71 71 
I(1) pp 8 8 7 7 

 p 14 15 14 15 
 e 9 9 9 9 
 m 13 14 15 14 
 mm 7 8 8 8 
 n 3 4 3 3 
 b 17 17 18 18 
 v1 1 1 1 1 
 v2     
 v12 1 1 1 1 
 v28 1 1 1 1 
 v33 1 1 1 1 

Total I(1)  75 79 78 78 
Total general  149 149 149 149 
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Table 5. Average RMSE - Recursive forecasts from January 2001 to December 
2002. Raw data for main composite indicators 
 

 Economic Sentiment Indicator (v1)   1 month 2 months 3 months 6 months 12 months
AR 0.45* 0.77 1.02 1.51 1.52
ARIMA 1.92 3.21 4.36 7.27 6.25
TAR 4.65 7.14 9.33 15.07 20.51di

re
ct

 
m

et
ho

ds
 

MK-TAR 0.61 0.75 1.19 2.20 6.12
AR 2.73 2.83 2.92 3.08 1.70
ARIMA 0.46 0.46* 0.42* 0.41* 0.46*
TAR 0.71 0.84 1.06 1.80 3.03in

di
re

ct
 

m
et

ho
ds

 

VAR 4.38 4.55 4.70 4.98 3.49 * Best model  
 

 Industrial Confidence Indicator (v2)   1 month 2 months 3 months 6 months 12 months
AR 2.03 3.97 5.43 7.99 4.68
ARIMA 10.54 21.70 29.85 40.20 39.19
TAR 21.88 31.29 39.02 61.76 95.72
MK-TAR 3.68 4.31 7.33 10.93 87.78di

re
ct

 
m

et
ho

ds
 

VAR 3.39 5.63 6.90 12.25 17.82
AR 2.04 3.54 4.68 6.22 3.69
ARIMA 2.21 4.14 5.52 7.60 7.97
TAR 4.77 6.78 8.45 14.65 22.69in

di
re

ct
 

m
et

ho
ds

 

VAR 0.08* 2.15* 3.29* 3.28* 2.28* * Best model  
 

 Consumer Confidence Indicator (v12)   1 month 2 months 3 months 6 months 12 months
AR 1.68* 2.71* 3.65* 5.49 3.77
ARIMA 9.13 13.57 18.02 30.84 25.56
TAR 14.31 18.75 23.70 39.32 47.02
MK-TAR 2.68 4.42 6.77 10.38 90.78di

re
ct

 
m

et
ho

ds
 

VAR 3.02 5.24 7.67 13.62 24.60
AR 1.78 2.79 3.69 5.64 3.27*
ARIMA 5.42 4.54 3.93 3.00* 3.67
TAR 6.09 6.54 7.14 9.22 11.99in

di
re

ct
 

m
et

ho
ds

 

VAR 9.47 11.66 13.42 15.31 12.92 * Best model  
 

 Construction Confidence Indicator (v28)   1 month 2 months 3 months 6 months 12 months
AR 2.01 2.36 2.38 2.97 2.59*
ARIMA 15.82 26.90 36.08 50.42 44.52
TAR 26.32 38.53 50.42 73.45 100.06di

re
ct

 
m

et
ho

ds
 

VAR 5.00 8.01 11.38 22.41 38.31
AR 1.97 2.09* 2.15* 2.82* 2.88
ARIMA 12.62 14.07 15.31 18.56 22.76
TAR 13.06 14.62 16.96 25.21 32.69in

di
re

ct
 

m
et

ho
ds

 

VAR 0.07* 4.93 9.38 15.92 11.37 * Best model  
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 Retail Trade Confidence Indicator (v33)   1 month 2 months 3 months 6 months 12 months
AR 2.59 3.08 3.32 4.68 8.04
ARIMA 12.05 14.40 15.64 21.17 31.50
TAR 17.73 24.04 26.92 39.67 59.06
MK-TAR 2.56 3.63 2.41* 4.15 4.00*di

re
ct

 
m

et
ho

ds
 

VAR 3.70 4.70 4.83 4.00* 11.80
AR 2.47* 3.17 3.50 5.13 8.82
ARIMA 23.79 23.40 23.01 20.79 10.25
TAR 29.27 32.48 34.80 40.68 40.94in

di
re

ct
 

m
et

ho
ds

 

VAR 2.96 2.72* 4.05 5.01 7.46 * Best model  
 

 Services Confidence Indicator (v39)   1 month 2 months 3 months 6 months 12 months
AR 5.44 10.31 15.51 26.48 43.33
ARIMA 22.17 38.48 53.52 76.93 74.57
TAR 56.92 76.78 86.97 126.94 182.96di

re
ct

 
m

et
ho

ds
 

VAR 6.20 9.33 12.04 17.95 32.69
AR 5.61 9.94 13.97 20.49 35.87
ARIMA 4.43 7.53 10.46 16.32 20.39
TAR 12.00 16.22 18.57 25.46 41.09in

di
re

ct
 

m
et

ho
ds

 

VAR 0.69* 2.34* 7.59* 14.37* 18.90* * Best model  
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Table 6. Average RMSE - Recursive forecasts from January 2001 to December 
2002. Raw data for qualitative indicators according to the type of answer 
 
pp    
 1 month 2 months3 months6 months12 months 1 quarter2 quarters4 quarters
AR 1.00* 1.48* 1.91* 2.74* 3.23* 0.61* 0.57* 0.61*
ARIMA 4.15 5.60 6.71 8.79 9.53 1.79 1.85 2.17
TAR 10.23 24.04 56.91 836.09193363.17 2.55 3.36 4.35
MK-TAR 1.53 2.01 3.06 5.21 10.94 na na na
* Best model        
 

p    
 1 month 2 months3 months6 months12 months 1 quarter2 quarters4 quarters
AR 2.07 2.77 3.40* 4.41* 5.48* 1.87* 2.01* 2.29*
ARIMA 9.94 12.68 15.07 18.91 19.76 6.30 7.46 7.74
TAR 17.83 24.60 31.22 48.50 72.76 10.95 11.73 17.79
MK-TAR 1.92* 3.38 4.27 10.00 42.15 3.69 3.76 5.08
VAR unr 2.00 2.77* 3.48 5.01 6.25 2.48 2.72 2.91
VAR rest 2.41 3.41 4.31 6.06 6.91 2.46 2.79 2.90
* Best model        
 

e    
 1 month 2 months3 months6 months12 months 1 quarter2 quarters4 quarters
AR 2.22 2.87 3.37 4.28 5.21 3.12 3.52 3.47
ARIMA 10.42 13.05 15.00 17.95 18.30 9.40 10.13 7.64
TAR 36.59 39.57 42.46 92.09 167.79 12.38 14.58 19.95
MK-TAR 2.08 2.46* 4.01 5.78 9.27 na na na
VAR unr 1.88* 2.53 3.03* 3.82* 4.42* 1.50* 1.83* 2.19*
VAR rest 2.30 3.00 3.54 4.64 5.47 1.68 1.91 2.26
* Best model        
 

m    
 1 month 2 months3 months6 months12 months 1 quarter2 quarters4 quarters
AR 1.92* 2.77 3.46* 4.75* 5.41* 2.15* 3.13* 3.43*
ARIMA 9.67 13.72 16.81 22.32 23.98 7.02 10.47 11.00
TAR 18.11 39.66 51.40 112.63 781.91 10.53 14.04 15.11
MK-TAR 2.21 2.59* 3.65 5.15 12.09 3.74 4.34 6.92
VAR unr 2.03 3.00 3.74 5.21 6.19 2.79 3.58 4.24
VAR rest 2.23 3.15 3.91 5.46 6.39 2.53 3.22 3.61
* Best model        
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mm    
 1 month 2 months3 months6 months12 months 1 quarter2 quarters4 quarters
AR 0.72* 1.00* 1.19* 1.69* 2.34* 1.24* 1.22* 1.40*
ARIMA 3.66 4.83 5.64 7.89 10.01 3.60 3.50 3.70
TAR 5.17 6.37 7.71 13.06 23.38 4.53 3.78 4.82
MK-TAR 0.96 1.12 2.08 4.40 14.34 1.28 1.34 1.72
* Best model        
 

n    
 1 month 2 months3 months6 months12 months 1 quarter2 quarters4 quarters
AR 0.45 0.58 0.67 0.90 1.19 0.58* 0.62* 1.10*
ARIMA 2.12 2.41 2.58 3.10 3.47 1.45 1.06 1.72
TAR 4.91 6.92 9.70 25.89 526.08 2.21 3.32 5.99
MK-TAR 0.28* 0.29* 0.42* 0.46* 0.73* na na na
* Best model        
 

 b    

  1 month 2 months3 months6 months12 months1 quarter2 quarters4 quarters
AR 3.40 4.90 6.33 8.94 12.00 4.05 4.90 5.38
ARIMA 16.36 23.15 28.27 37.98 41.40 13.84 18.37 19.15
TAR 29.00 39.76 49.61 70.67 89.30 20.48 23.94 24.43
MK-
TAR 3.63 6.46 8.76 17.37 67.04 6.74 7.18 11.37

di
re

ct
 

m
et

ho
ds

 

VAR 3.89 5.85 7.94 12.74 16.51     
AR 3.29* 4.80 6.14 8.41* 9.64* 3.93* 4.79* 5.15*
ARIMA 3.31 4.74* 5.97* 8.50 11.19 4.68 6.73 8.77
TAR 5.94 11.02 15.78 96.28 20317.70 6.07 6.63 6.87
VAR unr 4.98 6.09 7.07 9.22 10.83 5.12 5.70 6.34in

di
re

ct
 

m
et

ho
ds

 

VAR rest 5.47 6.84 8.14 10.59 11.61 4.73 5.31 5.63

 * Best model        
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Table 7. Evaluation of the different seasonal adjustment methods 
 
a) Mean squared error (MSE) between results from seasonally adjusted data 
 

Average MSE between methods. (v1 … v4b) 
   TS X12 DA 

Average 0.000 0.008 0.173 TS S.D. 0.000 0.004 0.074 
Average  0.000 0.193 X12 S.D.  0.000 0.089 
Average   0.000 DA 
S.D.   0.000 

 
 
b) Mean squared error (MSE) between results from trend-cycle estimation 
 

Average MSE between methods. (v1 … v4b) 
   TS X12 WAV 

Average 0.000 0.010 0.369 TS S.D. 0.000 0.000 0.016 
Average  0.000 0.354 X12 
S.D.  0.000 0.011 
Average   0.000 WAV 
S.D.   0.000 

 
 
c) Revisions of trend-cycle series 
 

S.D of mean absolute deviation 
 TS X12 WAV 
V1 0.000 0.000 0.105 
V2 0.041 0.193 4.131 
V3P 0.003 0.002 0.965 
V3E 0.012 0.002 0.209 
V3M 0.023 0.004 1.911 
V3B 0.030 0.010 5.495 
V4P 0.003 0.035 0.922 
V4E 0.016 0.001 1.065 
V4M 0.022 0.001 3.685 
V4B 0.035 0.015 7.998 
V3B* 0.033 0.010 5.536 
V4B* 0.035 0.004 5.427 

* Indirect method. 
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d) Revisions of seasonally-adjusted series 
 

S.D. of mean absolute deviation 
 TS X12 DA 
V1 0.00 0.00 0.00 
V2 0.25 0.02 0.00 
V3P 0.01 0.01 0.00 
V3E 0.00 0.01 0.00 
V3M 0.00 0.01 0.00 
V3B 0.03 0.03 0.00 
V4P 0.04 0.00 0.00 
V4E 0.00 0.01 0.00 
V4M 0.00 0.01 0.00 
V4B 0.02 0.02 0.00 
V3B* 0.02 0.02 0.00 
V4B* 0.00 0.02 0.00 

* Indirect method. 
 
 
e) Forecasting raw-data or seasonally adjusted data? The Kruskal-Wallis test 
for detecting seasonality (summary of the results) 
 

H0: non-seasonality 
HA: seasonality 

 
 Rejection of the Null Non- TOTAL

Month 22 148 170 
Quarter 4 22 26 
TOTAL 26 170 196 
   

 Rejection of the Null Non- TOTAL
Month 11.22% 75.51% 86.73%
Quarter 2.04% 11.22% 13.27%
TOTAL 13.27% 86.73% 100.00%
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Table 8. The effects of removing outliers using TS 
 
a) Average variation coeffcient 
 

 Monthly indicators 
P 28.92 
E 5.86 
M 32.64 
B 979.29 

 
 
b) Analysis of the sign of the covariance between positive and negative answers 
 

Covariance Negative sign Positive sign TOTAL 
Month 32 1 33 
Quarter 4 1 5 
TOTAL 36 2 38 
  
Covariance Negative sign Positive sign TOTAL 
Month 84% 3% 87% 
Quarter 11% 3% 13% 
TOTAL 95% 5% 100% 

 
c) Tests of equality of variance 
 

H0: Equality of variance 
HA: Non-equality of variance 

 
  

Statistic Rejection of the Null Non-rejection of the Null TOTAL
Month 29 4 33
Quarter 2 3 5 
TOTAL 31 7 38
   

Statistic Rejection of the Null Non-rejection of the Null TOTAL
Month 76% 11% 87%
Quarter 5% 8% 13%
TOTAL 82% 18% 100%
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d) The effects on forecasting accuracy 
 

 Economic Sentiment Indicator (v1)   1 month 2 months 3 months 6 months 12 months
AR 0.45* 0.77 1.02 1.51 1.52
ARIMA 1.92 3.21 4.36 7.27 6.25
TAR 4.51 6.72 8.73 14.25 20.04di

re
ct

 
m

et
ho

ds
 

MK-TAR 0.61 0.75 1.20 2.20 6.15
AR 2.83 2.94 3.04 3.22 1.84
ARIMA 0.47 0.44* 0.41* 0.40* 0.48*
TAR 0.77 0.85 1.04 1.61 2.34in

di
re

ct
 

m
et

ho
ds

 

VAR 4.56 4.73 4.89 5.19 3.67 * Best model  
 
 
p    
 1 month 2 months3 months6 months12 months 1 quarter2 quarters4 quarters
AR 1.50* 1.95* 2.50* 3.19* 3.38 3.25* 3.88* 4.68*
ARIMA 8.52 11.42 13.65 18.01 15.99 11.22 13.92 15.08
TAR 15.53 20.80 26.23 45.54 76.03 20.94 21.29 34.48
MK-TAR 2.02 2.09 2.56 3.34 4.66 6.10 5.85 10.38
VAR unr 1.78 2.49 3.28 4.46 4.65 5.19 6.50 5.87
VAR rest 1.76 2.36 3.06 4.20 3.14* 4.06 5.01 4.98
* Best model        
 
 
e    
 1 month 2 months3 months6 months12 months 1 quarter2 quarters4 quarters
AR 1.70* 2.30 2.75* 3.33 3.74* 2.51* 2.95* 2.76*
ARIMA 8.53 11.41 13.81 16.64 16.20 7.17 7.96 5.72
TAR 13.31 16.98 19.71 27.24 34.88 10.17 12.37 18.09
MK-TAR 1.70 2.12* 2.96 3.31* 5.03 na na na
VAR unr 1.89 2.54 3.02 3.67 4.23 3.42 3.73 3.08
VAR rest 4.76 4.83 4.92 5.00 4.40 2.88 3.38 3.40
* Best model        
 
 
m    
 1 month 2 months3 months6 months12 months 1 quarter2 quarters4 quarters
AR 1.54 2.32 3.07 4.53 3.92 4.30* 6.15 6.27
ARIMA 8.68 13.16 16.76 22.93 15.55 14.55 21.98 22.36
TAR 14.48 21.38 28.02 49.10 83.71 22.46 30.87 35.20
MK-TAR 0.68* 0.63* 0.81* 0.94* 0.66* 6.73 7.65 12.68
VAR unr 1.70 2.71 3.61 5.40 6.08 6.80 9.48 8.49
VAR rest 1.56 2.27 2.95 4.45 3.60 4.34 6.00* 6.03*
* Best model        
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 b    

  1 month 2 months3 months6 months12 months1 quarter2 quarters4 quarters
AR 2.57* 3.64* 4.78* 6.89* 5.39* 7.17 9.18 9.13*
ARIMA 14.55 21.81 27.82 40.06 42.39 26.40 37.28 37.60
TAR 26.94 39.04 49.91 88.28 138.05 43.16 53.28 53.19
MK-
TAR 6.54 7.46 8.83 10.71 12.90 11.16 11.49 19.76

di
re

ct
 

m
et

ho
ds

 

VAR 3.10 4.34 5.77 9.48 12.17  
AR 4.09 4.97 6.00 8.06 7.36 6.69* 8.98* 9.24
ARIMA 4.08 5.28 6.33 9.14 9.39 8.30 13.12 16.61
TAR 5.73 6.87 8.14 12.69 20.76 12.20 13.44 13.61
VAR unr 4.18 5.43 6.91 9.75 11.14 11.56 15.68 14.16in

di
re

ct
 

m
et

ho
ds

 

VAR rest 4.37 5.45 6.68 9.36 7.27 7.77 10.48 10.47

 * Best model        
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Table 9. 
 
The next tables should be interpreted as follows: the number and type of detected outliers when adding a new observation are shown in 
columns, while in rows, the moment of time for each outlier can be found. 
 

v2 jan-
01 

feb-
01 

mar-
01 

apr-
01 

may-
01 

jun-
01 

jul-
01 

aug-
01 

set-
01 

oct-
01 

nov-
01 

des-
01 

jan-
02 

feb-
02 

mar-
02 

apr-
02 

may-
02 

jun-
02 

jul-
02 

aug-
02 

set-
02 

oct-
02 

nov-
02 

des-
02 

01-     AO AO  
10-     AO AO  
07- AO AO AO AO AO AO AO AO AO   AO 
06- AO AO AO AO AO AO AO AO AO   AO 
10-   LS LS LS LS LS LS LS LS  
11-     TC  
12-   AO    
01-     LS LS  
AO: Additive Outlier, TC: Transitory Change, LS: Level shift. 
 
 

v3b6 jan-
01

feb-
01 

mar-
01 

apr-
01

may-
01

jun-
01

jul-
01

aug-
01

set-
01

Oct-
01

nov-
01

des-
01

jan-
02 

feb-
02

mar-
02

apr-
02

may-
02

jun-
02

jul-
02

aug-
02

set-
02

oct-
02

nov-
02 

des-
02 

03-91    TC TC TC  TC TC TC TC TC TC TC TC TC TC TC 
05-97     LS  

AO: Additive Outlier, TC: Transitory Change, LS: Level shift. 
 
 

v3m jan-
01 

feb-
01 

mar-
01 

apr-
01 

may-
01 

jun-
01 

jul-
01 

aug-
01 

set-
01 

oct-
01 

nov-
01 

des-
01 

jan-
02 

feb-
02 

mar-
02 

apr-
02 

may-
02 

jun-
02 

jul-
02 

aug-
02 

set-
02 

oct-
02 

nov-
02 

des-
02 

03-91     TC TC TC TC TC 
07-96    AO AO AO AO AO AO AO AO AO AO AO AO AO AO AO AO AO AO AO AO 
05-00     AO AO AO AO AO 
05-01     LS LS LS LS LS 

AO: Additive Outlier, TC: Transitory Change, LS: Level shift. 

                                                 
6 No outlier is detected for v3p. 
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v3e jan-
01 

feb-
01 

mar-
01 

apr-
01 

may-
01 

jun-
01 

jul-
01 

aug-
01 

set-
01 

oct-
01 

nov-
01 

des-
01 

jan-
02 

feb-
02 

mar-
02 

apr-
02 

may-
02 

jun-
02 

jul-
02 

aug-
02 

set-
02 

oct-
02 

nov-
02 

des-
02 

02-91     TC  
11-92 LS  LS  LS  LS  

AO: Additive Outlier, TC: Transitory Change, LS: Level shift. 
 
 

v8b jan-
01

feb-
01 

mar-
01 

apr-
01

may-
01

jun-
01

jul-
01

aug-
01

set-
01

oct-
01

nov-
01

des-
01

jan-
02 

feb-
02

mar-
02

apr-
02

may-
02

jun-
02

jul-
02

aug-
02

set-
02

oct-
02

nov-
02 

des-
02 

07-85 LS      
01-88 TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC 
02-93    TC  TC TC 
01-97 AO AO AO AO AO AO AO AO AO AO AO AO AO AO AO AO AO AO AO AO AO AO AO 
06-01     AO  
07-01     AO 

AO: Additive Outlier, TC: Transitory Change, LS: Level shift. 
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v8m7 jan-
01

feb-
01 

mar-
01 

apr-
01

may-
01

jun-
01

jul-
01

aug-
01

set-
01

oct-
01

nov-
01

des-
01

jan-
02 

feb-
02

mar-
02

apr-
02

may-
02

jun-
02

jul-
02

aug-
02

set-
02

oct-
02

nov-
02 

des-
02 

07-85 LS LS LS LS LS LS LS LS LS LS LS LS LS LS LS LS LS LS LS 
03-86    TC TC TC TC TC TC TC TC TC TC TC TC TC 
05-86     AO  
09-87     AO  
01-88 AO AO AO AO TC AO AO AO AO AO TC TC TC TC TC TC TC TC TC TC TC TC TC 
11-88    TC TC TC TC TC TC TC TC TC LS TC TC TC 
03-89     AO TC AO  
05-90     TC  
01-93 AO    AO   
10-98 AO      
03-99 AO AO AO AO AO AO AO AO AO AO AO AO   
01-00 AO AO   AO AO AO   
02-00  AO AO AO AO AO  AO  
07-01    AO AO AO AO AO AO  AO AO AO AO AO AO AO 

AO: Additive Outlier, TC: Transitory Change, LS: Level shift. 
 
 

v8e jan-
01

feb-
01 

mar-
01 

apr-
01

may-
01

jun-
01

jul-
01

aug-
01

set-
01

oct-
01

nov-
01

des-
01

jan-
02 

feb-
02

mar-
02

apr-
02

may-
02

jun-
02

jul-
02

aug-
02

set-
02

oct-
02

nov-
02 

des-
02 

03-99 AO AO AO AO AO AO AO AO AO AO AO  AO AO 
12-01     AO AO 

AO: Additive Outlier, TC: Transitory Change, LS: Level shift. 

                                                 
7 No outlier is detected for v8p. 
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Abstract
The objective of this paper is to compare different time series methods for the short-
run forecasting of Business and Consumer Survey Indicators. We consider all 
available data taken from the Business and Consumer Survey Indicators for the Euro 
area between 1985 and 2002. The main results of the forecast competition are offered 
not only for raw data but we also consider the effects of seasonality and removing 
outliers on forecast accuracy. In most cases the univariate autoregressions were not 
outperformed by the other methods. As for the effect of seasonal adjustment methods 
and the use of data from which outliers have been removed, we obtain that the use of 
raw data has little effect on forecast accuracy. The forecasting performance of 
qualitative indicators is important since enlarging the observed time series of these 
indicators with forecast intervals may help in interpreting and assessing the 
implications of the current situation and can be used as an input in quantitative 
forecast models.
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1. Introduction

The amount of information provided by Business and Consumer Surveys concerning 

agents’ perceptions and expectations of their environment means that they are now 

recognised as a crucial instrument for gathering economic information in today’s 

ever-changing environment. Data obtained from Business and Consumer Surveys are 

often used in forecasting models and in testing different expectation schemes –

Kauppi et al (1996), Batchelor and Dua (1998), Mourougane and Roma (2002) and 

Nardo (2003)-. The speed with which the results of these surveys are made available 

and the wide range of variables included make them extremely useful for decision-

making -see Stuart (1985) for a deep discussion on the value of Business and 

Consumer Surveys-. The remarkable growth in business surveys in Europe since the 

early 1960s, and the need for them to be carried out and presented in a comparable 

way, led to the implementation of the Joint Harmonised EU Programme by the 

Commission in 1961.

The present paper tries to compare different time series methods for the short-run 

forecasting of Business and Consumer Survey Indicators. Certainly, forecast 

competitions have been considered in the economic literature although focused in 

quantitative variables such as industrial production (Byers and Peel, 1995; Simpson 

et al, 2001), output growth and employment (Clements and Smith, 2000) and 

exchange rates (Clements and Smith, 2001; Boero and Marrocu, 2002), as well as for 

general macroeconomic time series (Stock and Watson, 1999). On the other hand, as 

far as we know, forecast competitions have not been conducted for the case of 

qualitative variables. However, we consider that this kind of exercise can be useful to 
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analyse which forecasting method presents the best behaviour. The usefulness of this 

comparison is twofold. First, it will allow having the best qualitative forecast to 

evaluate whether a series will move up or down in all kind of processes which can be 

modified according to changing economic conditions (McIntosh and Dorfman, 1992) 

or to predict business cycle turning points (Diebold and Rudebusch, 1989). And 

second, it will guarantee that the best forecast could be used as an explanatory 

variable in quantitative forecast models (Biart and Praet, 1987; Parigi and Schlitzer, 

1995).

The objective of this paper is therefore to compare different time series methods for 

the short-run forecasting of Business and Consumer Survey Indicators. This 

objective can be summarised in the following two questions: Is it possible to forecast 

qualitative indicators? And, if so, which is the best procedure for conducting such 

forecasts? In order to answer these questions, we considered all available data taken 

from the Business and Consumer Survey Indicators for the Euro area between, in the 

main, January 1985 and December 2002. The dataset analysed includes 38 indicators 

(33 of which are monthly and 5 quarterly) and 6 composite indicators. This gives a 

total of 216 observations for the monthly series and 73 for the quarterly series.1

First, we considered raw data in order to test the forecast accuracy of five different 

sets of models: autoregressions, ARIMA, Self-exciting threshold autoregressions 

(SETAR), Markov switching regime models and vector autoregressions (traditional 

VAR and also VAR models considering the joint evolution of different indicators). 

Some of the conclusions obtained are related to the high volatility presented by 
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indicators of this type, so that their statistical properties need to be taken into account 

when concluding.

An additional aspect considered in this comparison of forecasts is related to the 

balance forecasts. As survey data are derived from qualitative questions and based on 

subjective evaluations, the results are usually presented in terms of balances, which 

show the difference between the positive and negative percentages of answers. Since 

it is this balance that analysts take into account and the information that is usually 

forecast, we examine whether it is better to forecast the balance directly or rather to 

forecast the negative and positive answers first and, then, calculate the balance. 

Additionally, we examine the composite indicators, which are calculated from 

business surveys in which answers are weighted to various questions in the survey. 

When looking at these aggregate indicators, we analyse whether it is preferable to 

forecast them directly or to obtain the forecast by weighting the forecasts for the 

different components.

Finally, we consider the effects of seasonal adjustment procedures and the removal 

of outliers on forecast accuracy. In the case of seasonal adjustment procedures, we 

apply different methods to the indicators so as to obtain seasonally adjusted data 

(using Tramo/Seats - TS, X12 and Dainties - DA) and trend cycle estimation (using 

TS, X12 and Wavelets - WAV) in order to evaluate differences. In the case of 

outliers, we consider how their presence might affect the results by using TS to 

remove them (additive, transitory changes and level shifts) from the original series, 

and to what extent the effects of outliers should be removed each time a new 

observation is available.
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The outline of the paper is as follows. The next section presents the models that are 

considered in the forecast competition. The database and the design of the forecast 

competition experiment is given in section 3. Section 4 offers the main results of the 

forecast competition not only for raw data but we also consider the effects of 

seasonality and removing outliers on forecast accuracy. Finally, section 5 concludes. 

2. Models for forecasting Business and Consumer Survey Indicators

In order to assess alternative methods and models for forecasting Business and 

Consumer Surveys Indicators, we chose to focus on five different sets of model: 

autoregressions (AR), ARIMA, Self-exciting threshold autoregressions (SETAR), 

Markov switching regime models (MK) and vector autoregressions (traditional VAR 

and also VAR models considering the joint evolution of different indicators).

Autoregressions

The widely known autoregressive model (also known as the distributed-lags model) 

explains the behaviour of the endogenous variable as a linear combination of its own 

past values:

tptpttt YYYY εφφφ ++++= −−− ...2211 .

The key question is how to determine the number of lags that should be included in 

the model. For monthly -quarterly- data we considered different models with a 
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minimum number of 1 lag up to a maximum of 24 -8- (including all the intermediate 

lags), selecting the model with the lowest Akaike Information Criteria (AIC) value.2

ARIMA models

Since the study conducted by Box and Jenkins (1970), ARIMA models have been 

widely used and their forecast performance has also been confirmed.3 The general 

expression of an ARIMA model is the following:

( ) ( ) ( ) ( ) t
s

st
dDss

s LLx)L1()L1(LL εθΘ=−−φΦ λ ,

where L is the lag operator, ( ) ( )Qs
Qs

s
s

s
s

s
s L...LLL Θ−−Θ−Θ−=Θ 2

21  is a Q-order

seasonal moving average polynomial, ( ) ( )Ps
Ps

s
s

s
s

s
s L...LLL Φ−−Φ−Φ−=Φ 2

21  is a

P-order seasonal autoregressive polynomial, ( ) ( )q
q LLLL θθθθ −−−−= ...1 2

2
1

1  is a 

q-order regular moving average polynomial, ( ) ( )p
p LLLL φφφφ −−−−= ...1 2

2
1

1  is a 

p-order regular autoregressive polynomial, D is the seasonal difference order, d is the 

regular difference order, λ is the value of the Box-Cox (1964) transformation, S is 

the periodicity of the time series under consideration (S=4 for quarterly data, and 

S=12 for monthly data), and tε  is the disturbance assumed to behave as a white 

noise.

In order to use models of this kind for forecasting, the proper model has to be 

identified (i.e., giving values to the order of the different polynomials, to the 

difference operator, etc.). For monthly data, we considered models with up to 12 AR 

Page 51 of 106

Editorial Office, Dept of Economics, Warwick University, Coventry CV4 7AL, UK

Submitted Manuscript

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

7

and MA terms (4 in the case of quarterly data) selecting the model with the lowest 

AIC value. The statistical goodness of the selected model was also checked.

TAR models

In the case of the ARIMA model the relationship between the current value of a 

variable and its lags is supposed to be linear and constant over time. However, when 

looking at real data it can be seen that expansions tend to be more prolonged over 

time than recessions (Hansen, 1997). In fact, in the behaviour of most economic 

variables there seems to be a cyclical asymmetry that linear models are unable to 

capture (Clements and Smith, 1999). A Self-Excited Threshold Autoregressive 

model (SETAR) for the time series Xt can be summarised as follows:

tt uXLB +)·( if Xt-k ≤ X, and

tt vXL +)·(ζ if Xt-k > X,

where ut and vt are white noises, B(L) and )(Lζ are autoregressive polynomials, the 

value k is known as delay and the value X is known as threshold. This two-regime 

self-exciting threshold autoregressive process is estimated using monthly and 

quarterly data for each indicator and the Monte Carlo procedure is used to generate 

multi-step forecasts. The delay values selected are those that minimise the sum of 

squared errors among values between 1 and 12 for monthly data and 1 and 4 for 

quarterly data.4 The values of the threshold are given by the variation of the variable 

being analysed.

Page 52 of 106

Editorial Office, Dept of Economics, Warwick University, Coventry CV4 7AL, UK

Submitted Manuscript

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

8

Markov switching regime models

Threshold autoregressive models are perhaps the simplest generalisations of linear 

autoregressions. In fact, these models were built on developments of traditional 

ARMA time series models. As an alternative to these, time series regime-switching 

models assume that the distribution of the variable is known conditional on a 

particular regime or state occurring. When the economy changes from one regime to 

another, a substantial change occurs in the series. Hamilton (1989) presented the 

Markov regime-switching model in which the unobserved regime evolves over time 

as a 1st-order Markov process. The regime completely governs the dynamic 

behaviour of the series. This implies that once we assume conditions on a particular 

regime occurring, and assume a particular parameterisation of the model, we can 

write down the density of the variable of interest. However, as the regime is strictly 

unobservable, statistical inferences have to be drawn concerning the likelihood of 

each regime occurring at any point in time. So, we need to obtain the transition 

probabilities from one regime to the other.

Three approaches have been adopted in estimating these models (Potter, 1999). First, 

Hamilton (1989) developed a non-linear filter to evaluate the likelihood function of 

the model and, then, he directly maximised the likelihood function. Second, in a later 

article, Hamilton (1990) constructed an EM algorithm which proves particularly 

useful should all the parameters switch. Finally, Albert and Chib (1993) developed a 

Bayesian approach to estimation.

Here, we employ a Markov-switching threshold autoregressive model (MK-TAR) in 

which we are able to allow for different regime-dependent intercepts, autoregressive
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parameters, and variances. The estimation of the models is carried out by maximum 

likelihood using the Hamilton (1989) filter5 together with Kim's smoothing filter 

(1994).

Having estimated the probabilities of expansion and recession, we could then 

construct the following model for the time series Xt:

tt uXLB +)·( if P[Expansion/Xt-k]≤ P, and

tt vXL +)·(ζ if P[Recession/Xt-k]>P,

where, as in the SETAR models, ut and vt are white noises, B(L) and )(Lζ are 

autoregressive polynomials, the value k is the estimated delay and the value P is the 

estimated threshold6. The selected delay values are those that minimise the sum of 

squared errors for values between 1 and 12 for monthly data and 1 and 4 for 

quarterly data. The values of the threshold are given by the variation of the 

probability.

VAR models

In these models, each variable depends on a certain number of lags of the other 

variables under analysis (Sims, 1982). The idea is that the positive, neutral and 

negative answers to each question can be considered jointly. Moreover, as the sum of 

the percentages of positive (P), neutral (E) and negative (M) answers would, by 

definition, total one hundred, this restriction could also be introduced in the model 

improving its forecasting accuracy:
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In order to use models of this kind for forecasting, the proper model must first be 

identified (i.e., give values to the number of lags p). For monthly data, we considered 

models with up to 24 lags (8 in the case of quarterly data), selecting the model with 

the lowest AIC value. The statistical goodness of the selected model was also 

checked.

3. Database and design of the forecast competition experiment 

The immediate relevance of the results of harmonised business and consumer 

surveys is one of their main properties, given that they are published shortly after the 

termination of the month to which they refer. The survey results are presented either 

in the form of balances for particular questions or as synthetic indicators. They are 

able to describe the panorama of the current economic situation much quicker than 

the quantitative indicators and the macroeconomic magnitudes from national 

accounts, though the latter tend to be more precise in their descriptions. 

The European Commission draws up and publishes a wide range of indicators 

calculated on the basis of the results sent in by more than 40 institutes in 25 countries 

in the framework of the Joint Harmonised EU Programme of Business and Consumer 

Surveys. Particular attention is paid to indicators for the Euro area. The EU 

Programme currently includes surveys for industry, construction, the retail trade, 

services, investment and consumers.
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For our analysis, we considered all the information available for the Business and 

Consumer Survey Indicators in the Euro area. The dataset analysed includes 38 

indicators (33 of which are monthly and 5 quarterly) and 6 composite indicators. The 

starting date of these indicators differs but most of them begin in January 1985 (or in 

the first quarter of 1985). The latest period to be included in the analysis is December 

2002 (or the final quarter of 2002). More details on the dataset can be found in Table 

1.

Since the objective of the paper was to assess alternative methods and models for 

forecasting Business and Consumer Survey Indicators, we initially considered raw 

data (in all cases, non seasonally adjusted levels of each category of the variables 

were used) in order to test the forecast accuracy of the five different sets of models 

presented in the previous section. 

In order to evaluate the relative forecasting accuracy of the models, each model was 

estimated for all the indicators included up to 2000.12 (or 2000.IV for quarterly 

indicators) and forecasts for 1, 2, 3, 6 and 12 months (or 1, 2, 4 quarters) in the future 

were computed. The model specifications are based on information up to 2000.12 or 

2000.IV and, thereafter, the models were re-estimated in each month or quarter and 

the forecasts were computed with these estimation results. Given the availability of 

actual values up to 2002.12 or 2002.III or 2002.IV, we were able to compute the 

forecast errors for each indicator and method in a recursive way (i.e., for the 1 month 

forecast horizon, 24 forecast errors were computed for each indicator). In order to 

summarise this information, the Root Mean Square Error (RMSE) and Mean 
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Absolute Percentage Error (MAPE) were computed. These values provide useful 

information for analysing the forecast accuracy of each method, and enabled us to 

rank the methods according to their values.

Before showing the results of this comparative exercise, it should be stressed that the 

statistical properties of the Business and Consumer Survey Indicators differ 

substantially from those of the main macroeconomic variables (GDP, CPI, Industrial 

Production, Industrial Producer Prices, etc.). In Table 2, the variation coefficient is 

shown. It is worth noting that the variation coefficient values are extremely high for 

some indicators. This can be interpreted as evidence of the high volatility of the 

indicators and, with this in mind, the forecast accuracy of the methods considered 

can be expected to be lower than that for other macroeconomic variables.

A further result of interest is that if we examine the average values of the variation 

coefficient for categories (i.e., positive answers, negative answers, balance, etc.), the 

highest value corresponds to the balance. A possible explanation for the higher 

variance of the balance is purely statistical. The variance of the balance can be 

decomposed as follows:

),(·2)()()()( mpCovmVarpVarmpVarbVar −+=−= .

So, if the covariance between positive and negative answers is negative (i.e. they 

move in opposite directions), the variance of the balance would be higher than the

sum of the variances of the other two components. In 87% of cases, the sign of this 

covariance is negative, so the variance of the balance is higher (in most cases) than 
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the variance of the sum of variances of the two components (Table 3a). To test 

whether it was significantly higher, we applied a test of equality of variances 

between the balance and the other two components. In 76% of the cases, the null 

hypothesis of equality of variances was rejected (Table 3b).

Additionally, we computed some of the most commonly used methods to test the unit 

root hypothesis: the augmented Dickey and Fuller test (1979), the Phillips and Perron 

test (1988) and the Kwiatkowski, Phillips, Schmidt and Yongcheol test (1992) (Table 

4a). The Perron test (1989) was also adapted so as to allow for different types of 

structural change: in the level (crash model) or in the slope (breaking trend) (Table 

4b). Since the variables under consideration can only take values between 0 and 100, 

a priori we would expect most of them to be I(0). The most striking result is that in 

many cases the variables are eventually considered to be I(1) - 85% if the structural 

break is not considered and 52% when it is 7.

4. Results: forecast accuracy comparison

4.1. Main results for raw data

In Table 5 we present a summary of the recursive forecasts of the main indicators 

(Economic Sentiment -v1-, Industrial Confidence -v2-, Consumer Confidence -v12-, 

Construction Confidence -v28-, Retail Trade Confidence -v33- and Services 

Confidence -v39- Indicators) for the different models. The table refers to raw data. 

For each indicator, the best model is highlighted.
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Before analysing the results, it should be pointed out that composite indicators are 

usually calculated from business surveys. For example, the Economic Sentiment 

Indicator is obtained by weighting the answers to different questions on the survey. 

When dealing with these aggregates, there are two possible courses of action: 

forecasting them directly or obtaining the forecast by weighting the forecasts for the 

different components. To the best of our knowledge, no research has been 

undertaken in order to determine which method provides the best results. Therefore, 

we chose to forecast composite indicators in two ways: what we call a direct

(computation) method and by using the forecasts of the components, an indirect

(computation) method.

Among the conclusions that can be extracted from Table 5, we would like to point 

out the following. First, indirect, as opposed to direct, methods seem to perform best. 

Thus, it would  appear to be better to forecast these indicators from the forecasts of 

the components than directly. Second, among the direct methods, the AR model 

outperformed the rest of the models in almost all cases. By contrast, the ARIMA and 

TAR models were never found to be the best forecasters. Third, among the indirect 

methods, the AR and VAR models were the ones that provided the lowest RMSE 

(with the exception of the Economic Sentiment Indicator, where the ARIMA model 

outperformed the rest of the models). Once again, the TAR model presented the 

highest values for the RMSE.

As for the results of the forecast comparison for the remaining indicators, details 

figures are shown in Table 6, in which the average RMSE is shown for each type of 

answer and where the best model is highlighted in each case. The main conclusions 
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of this analysis can be summarised as follows. As far as the forecast accuracy of the 

different methods is concerned, in most cases the univariate autoregressions are not 

outperformed by the other methods. In fact, only the forecast errors from the VAR 

and Markov models were lower than those obtained from AR models in some cases. 

It should also be stressed that unrestricted VAR models usually work better than 

restricted VAR models and that the errors displayed by the ARIMA, TAR and VAR 

models for different indicators were generally higher.

Furthermore, taking into account that the variables considered (positive, neutral and 

negative answers but not the balance) can only take values between 0 and 100, the 

forecast errors are quite high even in the case of the best model. As expected, the 

forecasts errors increased for longer horizons in most cases and, in general, variables 

corresponding to questions with a higher number of possible answers were better 

forecast than the rest. In most cases, the size of the errors was higher for the balance 

than for the components (this is related to the higher volatility of these variables), 

which is a common result for most composite indicators (one notable exception is the 

Economic Sentiment Indicator).

A further aspect to be considered is related to that of balance forecasts. As survey 

data are derived from qualitative questions and based on subjective evaluation, the 

results are usually presented in terms of balances, which show the difference between 

positive and negative percentages of answers. The balance is the information that 

analysts take into account and the information that is usually forecast. But, is it better 

to forecast the balance directly or to forecast negative and positive answers and then 

calculate the balance? In order to answer this question we replicated the forecasting 
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comparison described above, but on this occasion we computed the balance from the 

forecasts of negative and positive answers using the AR, ARIMA, TAR and VAR 

models. The results (in the last block of Table 6, referred to as ‘b’) show that it is 

usually better to forecast the balance from the forecasts of positive and negative 

answers rather than by doing it directly, and that the AR model outperforms the rest 

of the models in almost all cases.

4.2. The effects of seasonality on data revision and on forecast accuracy

Seasonal adjustment methods are usually applied to these indicators. However, an 

interesting point that has not been analysed to date is the extent to which the method 

chosen for seasonal adjustment - TS, X12, DA, WAV, among others - might affect 

the values of the series under consideration. In order to remedy this situation, we 

applied all these methods of seasonal adjustment so as to obtain seasonally adjusted 

data (using TS, X12 and DA) and trend cycle estimations (using TS, X12 and WAV) 

for a number of qualitative indicators 8. From the results shown in Table 7, several 

conclusions can be drawn:

First, TS and X12 results were very similar but DA results (seasonal adjustment) and 

WAV results (trend cycle-estimation) differed greatly. Specifically, differences were 

found to be greater in trend-cycle estimations than in seasonal adjustments (Table 7a 

and 7b).

Second, in order to analyse how the seasonal adjustment method chosen affected the 

revision of the series, seasonally adjusted data and trend-cycle estimations were 
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computed in a recursive way adding one more observation from 2001.12 to 2002.12. 

The results (see Table 7c and 7d) showed that: 

• There was no relationship between the size of the revision in a given 

observation and the number of time periods between this observation and the 

last observation available.

• There were great differences in the size of revision for the different variables 

in each seasonal adjustment method considered.

• There were no revisions of seasonally adjusted data using the DA method.

• TS revisions of seasonally adjusted data were greater than X12 revisions.

• Trend-cycle estimations using WAV method showed dramatic revisions.

• TS revisions of trend-cycle data were greater than X12 revisions.

Third, the choice of seasonal adjustment method was found to affect forecasts. Thus, 

we were  interested in determining whether it was better to forecast raw data and then 

apply a seasonal adjustment method or not. As pointed out by Commission staff, the 

information from Business and Consumer Surveys has little seasonality, and, 

therefore the results should not vary significantly. To confirm this, we computed the 

Kruskal-Wallis test (also in Table 7e) for all the qualitative variables in order to 

verify the importance of seasonality. In almost 87% of cases, the null hypothesis of 

non-seasonality was not rejected, that is, most series did not present a seasonal 

component. This, it would seem, despite the large number of studies discussing this 

matter, that too much attention has been given to this issue in the context of Business 

and Consumer Surveys.
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4.3. The effects on forecast accuracy of removing outliers using TS 

The presence of outliers may well affect the results discussed in the previous 

sections. Therefore, TS can be used in order to remove the outliers from the original 

series. TS uses an automatic procedure to detect and eliminate outliers from a series

(Gómez and Maravall, 1997). Three different types of outliers are considered here: 

Additive outliers (AO), Transitory changes (TC) and Level shifts (LS).

In Table 8a the variation coefficient for the qualitative variables from the industrial 

survey and the balances for the other surveys are shown. From these statistics, it can 

be seen that for some series, TS did not detect any outliers (i.e., the Economic 

Sentiment Indicator). However, in most cases, the volatility was substantially lower, 

although in some the value of the variation coefficient increased (although the 

standard deviation was lower, the value of the mean –which is clearly affected by the 

presence of extreme values- was even lower). As before, we now computed the value 

of the covariance between positive and negative answers and we tested to see if the 

variance of the balance differed from that of positive or negative answers. As 

observed in Table 8b, in 95% of the cases (as opposed to 87% when seasonality was 

not taken into account), the covariance was negative, so that the null hypothesis of 

equality of variances between the balance and the other two components (positive 

and negative answers) was rejected in 82% of the cases (compared with 76%) -see 

Table 8c-. Finally, the results on the unit root tests did not change at all when the 

outliers were removed from the variables, so that the main results remained 

unchanged.
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Using these data, we repeated the comparison of forecasts as in the previous sections. 

The main results are shown in Table 8d. The main conclusions to be drawn from this 

analysis can be summarised as follows: First, RMSE values were the same or lower 

in nearly all variables when using data from which the outliers had been removed 

using TS. However, there were differences between models: while in the AR, 

ARIMA, TAR and Markov models the values of RMSE were markedly lower than 

those for raw data, the results for VAR (unrestricted and restricted) were, some 

times, worse. Finally, the VAR models consisting of different indicators performed 

much better when the outliers were removed.

Second, when comparing the RMSE for the balance computed from forecasts with 

positive and negative answers, we observed that the results for the models analysed 

(AR, ARIMA, TAR and VAR) - once the outliers had been removed - were, in most 

cases, higher than those for raw data. Similarly, when the composite indicators were 

computed from forecasts based on their components, here again the models 

performed worse once the outliers had been removed.

A practical issue that needs to be borne in mind when forecasting these series in real 

time concerns the effects of incorporating new observations on outlier detection 

using TS. In other words, is it necessary to remove the effects of outliers each time a 

new observation is available? To analyse this, we adopted a similar approach to that 

regarding the effects of seasonal adjustment procedures. In order to evaluate the 

effects of incorporating new observations, we identified the time periods during 

which an outlier is found in a recursive way by adding one more observation from 

2001.1 to 2002.12. The results of this analysis are shown in Table 9. From these 
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results, we can conclude that the number and type of outliers clearly depend on the 

available sample. Although there was some ‘persistence’ in the moment and type of 

detected outliers, some significant changes in the results might also be recorded 

using TS once an additional observation is included (sometimes due to changes in the 

underlying model, but also to the dynamics of the series itself). So, if we take into 

account the results regarding the forecast accuracy of the various models, and 

although this has the effect of increasing the computational cost, it would appear to 

be necessary to apply the TS to remove the effects of outliers each time an additional 

observation becomes available.

In addition, we should stress that when comparing the various seasonal adjustment 

methods, the TS and X12 results were very similar, but the DA (seasonal adjustment) 

and WAV results (trend cycle-estimation) presented marked differences. In fact, 

these differences were greater for the trend-cycle estimations than the seasonal 

adjustments, whereas there were considerable differences in the size of revision for 

the different variables for each seasonal adjustment method considered.

Additionally, after removing the outliers using TS the forecast accuracy of the 

various methods was similar to that observed with raw data. The number and type of 

outliers identified with TS clearly depends on the available sample. Although there is 

some ‘persistence’ in the moment and type of detected outliers, significant changes 

can be reflected in the results.
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5. Conclusions

The objective of this paper is to compare time series methods for the short-run 

forecasting of Business and Consumer Survey Indicators. We analysed a dataset for 

the Euro area, which included 38 indicators (33 of which were monthly and 5 

quarterly) and 6 composite indicators, mostly between January 1985 and December 

2002. In order to test the forecast accuracy, we used five different sets of models: 

autoregressions, ARIMA, Self-exciting threshold autoregressions, Markov switching 

regime models and vector autoregressions (traditional VAR and also VAR models 

considering the joint evolution of different indicators). 

As far as the forecast accuracy of the different methods is concerned, in most cases 

the univariate autoregressions were not outperformed by the other methods. In fact, 

only the forecast errors from the VAR and Markov models were, in some cases,  

lower than those from the AR models. It should also be stressed that unrestricted 

VAR models usually worked better than restricted VAR models and that the errors 

displayed by the ARIMA, TAR and VAR models comprising a range of indicators 

were generally higher. However, the size of the forecast errors was high even in the 

case of the best model.

Interestingly, both in the case of composite indicators and indicators which belong to 

a balance category, our results show that it is preferable to forecast them indirectly. 

As for the effect of the seasonal adjustment methods that are typically applied to 

these indicators, we used a range of methods (TS, X12, Dainties and Wavelets) that 

suggest that the use of raw data has little effect on forecast accuracy.  A similar 
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conclusion is obtained when using data from which outliers have been removed 

using TS, as here again forecast errors were found to be similar for nearly all 

variables.
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Notes:

1.  More details on the dataset can be found in Table 1. Although the number of 

observations in any empirical analysis should be ideally as large as possible, the 

type of analysis performed in this paper is considered to be valid over 50 

observations. 

2. We provide the AIC since it is one of the criteria most widely used when 

comparing time-series models. However, the sensitivity of the results has been 

analysed so as to check whether the results differ significantly if other criteria 

were used. We have also obtained the Hannan-Quinn criterion as well as the 

Schwartz criterion (or Bayesian information criterion) for all the models and a 

wide range of variables. The selected model is the same in all the cases, 

confirming the robustness of our results. 

3. The univariate ARIMA models are usually used in the forecasting literature for 

comparative purposes when other forecasting methods are analysed (e.g. 

Debenedictis, 1997; Feng and Liu, 2003). 

4.  We have assumed one year in order to minimise the sum of squared errors since 

variables in Business and Consumer Surveys only ask for agents’ perceptions and 

expectations of their environment in some next months or as a maximum of one 

year ahead. Thus, since the short term is the one being analysed in these surveys, 

this is the one that is taken in this paper when comparing the different time series 

methods. 

5.  The Hamilton filter is an iterative procedure which provides estimates of the 

probability that a given state is prevailing at each point in time given its previous 

history. These estimates are dependent upon the parameter values given to the 
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filter. Running the filter through the entire sample provides a log likelihood value 

for the particular set of estimates used. This filter is then repeated to optimise the 

log likelihood of obtaining the MLE estimates of the parameters. With the 

maximum likelihood parameters, the probability of state 0 at each point in time is 

calculated and these are the probabilities of recession and expansion.

6.  An alternative approach would have consisted in imposing the value of P and k 

instead of estimating them. These models are known as Markov Switching 

Autoregressive Models (MS-AR) and, in general, the values of P are 0.7 or 0.8 

and the values of k, 0 or 1.

7.  It is also interesting to note that all the tests only coincide in 10 series.

8.  The seasonality analysis was conducted for variables v1, v2, v3p, v3e, v3m, v3b, 

v4p, v4e, v4m and v4b.

We acknowledge financial support from ECFIN/2002/A3-01. We would like to thank the 

European Commission for their helpful comments and support. The usual disclaimer applies.
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Table 1. List of Business and Consumer Surveys Indicators for the Euro area

Description Freq. Last obs Obs. Categories
v1 Economic Sentiment Indicator month jan-85 dec-02 216
v2 Industrial Confidence Indicator (v7+v4-v6)/3 month jan-85 dec-02 216
v3 Production trend observed in recent months month jan-85 dec-02 216 P E M B
v4 Assessment of order-book levels month jan-85 dec-02 216 P E M B
v5 Assessment of export order-book levels month jan-85 dec-02 216 P E M B
v6 Assessment of stocks of finished products month jan-85 dec-02 216 P E M B
v7 Production expectations for the months ahead month jan-85 dec-02 216 P E M B
v8 Selling price expectations for the months ahead month jan-85 dec-02 216 P E M B
v9 Employment expectations for the months ahead month jan-85 dec-02 216 P E M B
v10 New orders in recent months quarter 1985-I 2002-IV 72 P E M B
v11 Export expectations for the months ahead quarter 1985-I 2002-IV 72 P E M B
v12 Consumer Confidence Indicator (v14+v16-v19+v23)/4 month jan-85 dec-02 216
v13 Financial situation over last 12 months month jan-85 dec-02 216 PP P E M MM N B
v14 Financial situation over next 12 months month jan-85 dec-02 216 PP P E M MM N B
v15 General economic situation over last 12 months month jan-85 dec-02 216 PP P E M MM N B
v16 General economic situation over next 12 months month jan-85 dec-02 216 PP P E M MM N B
v17 Price trends over last 12 months month jan-85 dec-02 216 PP P E M MM N B
v18 Price trends over next 12 months month jan-85 dec-02 216 PP P E M MM N B
v19 Unemployment expectations over next 12 months month jan-85 dec-02 216 PP P E M MM N B
v20 Major purchases at present month jan-85 dec-02 216 PP E MM N B
v21 Major purchases over next 12 months month jan-85 dec-02 216 PP P E M MM N B
v22 Savings at present month jan-85 dec-02 216 PP P M MM N B
v23 Savings over next 12 months month jan-85 dec-02 216 PP P M MM N B
v24 Statement on financial situation of household month jan-85 dec-02 216 PP P E M MM N B
v25 Intention to buy a car within the next 2 years quarter 1990-I 2002-IV 52 PP P M MM N B
v26 Purchase or build a home within the next 2 years quarter 1990-I 2002-IV 52 PP P M MM N B
v27 Home improvements over the next 12 months quarter 1990-I 2002-IV 52 PP P M MM N B

(Continues next page)
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Description Freq. First obs Last obs Obs Categories
v28 Construction Confidence Indicator (v30+v31)/2 month jan-85 dec-02 216
v29 Trend of activitiy compared with preceding months month jan-85 dec-02 216 P E M B
v30 Assessment of order books month jan-85 dec-02 216 P E M B
v31 Employment expectations for the months ahead month jan-85 dec-02 216 P E M B
v32 Price expectations for the months ahead month jan-85 dec-02 216 P E M B
v33 Retail Trade Confidence Indicator (v34-v35+v37)/3 month jan-86 dec-02 204
v34 Present business situation month jan-85 dec-02 216 P E M B
v35 Assessment of stocks month jan-85 dec-02 216 P E M B
v36 Orders placed with suppliers month feb-85 dec-02 215 P E M B
v37 Expected business situation month jan-86 dec-02 204 P E M B
v38 Employment month abr-85 dec-02 213 P E M B
v39 Services Confidence Indicator (v40+v41+v42)/3 month abr-95 dec-02 93
v40 Assessment of business climate month abr-95 dec-02 93 P E M B
v41 Evolution of demand in recent months month abr-95 dec-02 93 P E M B
v42 Evolution of demand expected in the months ahead month abr-95 dec-02 93 P E M B
v43 Evolution of employment in recent months month abr-95 dec-02 93 P E M B
v44 Evolution of employment expected in the months ahead month jan-97 dec-02 72 P E M B

The letters refer to positive answers (pp and p), neutral answers (e), negative answers (mm and m), non answers (n), balance (b) and composite indicators (i).
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Table 2. Variation coefficient for the Business and Consumer Surveys 
Indicators

Average variation coefficient
Monthly indicators Quarterly  indicators

pp 27.22 13.90
p 31.33 15.10
e 16.03 4.38
m 33.75 17.02

mm 33.76 2.55
n 19.52 36.44
b 348.47 118.68
i 67.26

Table 3a. Analysis of the sign of the covariance between positive and negative 
answers

Covariance Negative sign Positive sign TOTAL
Month 28 5 33
Quarter 5 0 5
TOTAL 33 5 38

Covariance Negative sign Positive sign TOTAL
Month 74% 13% 87%
Quarter 13% 0% 13%
TOTAL 87% 13% 100%

Table 3b. Tests of equality of variance ( 1N,1N2
Y

2
X

YX
F~

S

S
F −−= )

H0: Equality of variance ( 2
Y

2
X σ=σ )

HA: Non-equality of variance

Statistic Rejection of the Null Non-rejection of the Null TOTAL
Month 27 6 33
Quarter 2 3 5
TOTAL 29 9 38

Statistic Rejection of the Null Non-rejection of the Null TOTAL
Month 71% 16% 87%
Quarter 5% 8% 13%
TOTAL 76% 24% 100%

Page 77 of 106

Editorial Office, Dept of Economics, Warwick University, Coventry CV4 7AL, UK

Submitted Manuscript

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

33

Table 4a. Results of the tests for unit root hypothesis. Unit root tests without 
structural break. (I(1) in 85% of the cases)

Order Variable ADF PP(k=4) PP(k=8) KPSSa KPSSb
I(0) pp 3 1 4 9 6

p 4 4 13 18 10
e 1 6 4 16 5
m 4 3 12 21 9

mm 1 8 3
n 1 5 1 1 4
b 4 9 11 24 10
v1 1 1
v2 1 1 1 1
v12 1
v28 1
v33 1

Total I(0) 18 28 47 101 50
I(1) pp 9 11 8 3 6

p 23 23 14 9 17
e 25 20 22 10 21
m 23 24 15 6 18

mm 12 12 11 4 9
n 11 7 11 11 8
b 24 19 17 4 18
v1 1 1 1
v2 1
v12 1 1 1 1
v28 1 1 1 1
v33 1 1 1 1

Total I(1) 131 121 102 48 99
Total general 149 149 149 149 149

ADF: augmented Dickey and Fuller test (1979); PP: Phillips and Perron test (1988); KPSS: 
Kwiatkowski, Phillips, Schmidt and Yongcheol test (1992).
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Table 4b. Results of the tests for unit root hypothesis. Perron’s (1989) test with 
structural break. (I(1) in 52 % of the cases)

Order Variable Crash model (a) Crash model (b) Breaking trend (a) Breaking trend (b)
I(0) pp 4 4 5 5

p 13 12 13 12
e 17 17 17 17
m 14 13 12 13

mm 5 4 4 4
n 9 8 9 9
b 11 11 10 10
v1
v2 1 1 1 1
v12
v28
v33

Total I(0) 74 70 71 71
I(1) pp 8 8 7 7

p 14 15 14 15
e 9 9 9 9
m 13 14 15 14

mm 7 8 8 8
n 3 4 3 3
b 17 17 18 18
v1 1 1 1 1
v2
v12 1 1 1 1
v28 1 1 1 1
v33 1 1 1 1

Total I(1) 75 79 78 78
Total general 149 149 149 149
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Table 5. Average RMSE - Recursive forecasts from January 2001 to December 
2002. Raw data for main composite indicators

Economic Sentiment Indicator (v1)
1 month 2 months 3 months 6 months 12 months

AR 0.45* 0.77 1.02 1.51 1.52
ARIMA 1.92 3.21 4.36 7.27 6.25
TAR 4.65 7.14 9.33 15.07 20.51di

re
ct

 
m

et
ho

ds

MK-TAR 0.61 0.75 1.19 2.20 6.12
AR 2.73 2.83 2.92 3.08 1.70
ARIMA 0.46 0.46* 0.42* 0.41* 0.46*
TAR 0.71 0.84 1.06 1.80 3.03

in
di

re
ct

 
m

et
ho

ds

VAR 4.38 4.55 4.70 4.98 3.49
* Best model

Industrial Confidence Indicator (v2)
1 month 2 months 3 months 6 months 12 months

AR 2.03 3.97 5.43 7.99 4.68
ARIMA 10.54 21.70 29.85 40.20 39.19
TAR 21.88 31.29 39.02 61.76 95.72
MK-TAR 3.68 4.31 7.33 10.93 87.78di

re
ct

 
m

et
ho

ds

VAR 3.39 5.63 6.90 12.25 17.82
AR 2.04 3.54 4.68 6.22 3.69
ARIMA 2.21 4.14 5.52 7.60 7.97
TAR 4.77 6.78 8.45 14.65 22.69

in
di

re
ct

 
m

et
ho

ds

VAR 0.08* 2.15* 3.29* 3.28* 2.28*
* Best model

Consumer Confidence Indicator (v12)
1 month 2 months 3 months 6 months 12 months

AR 1.68* 2.71* 3.65* 5.49 3.77
ARIMA 9.13 13.57 18.02 30.84 25.56
TAR 14.31 18.75 23.70 39.32 47.02
MK-TAR 2.68 4.42 6.77 10.38 90.78di

re
ct

 
m

et
ho

ds

VAR 3.02 5.24 7.67 13.62 24.60
AR 1.78 2.79 3.69 5.64 3.27*
ARIMA 5.42 4.54 3.93 3.00* 3.67
TAR 6.09 6.54 7.14 9.22 11.99

in
di

re
ct

 
m

et
ho

ds

VAR 9.47 11.66 13.42 15.31 12.92
* Best model

Construction Confidence Indicator (v28)
1 month 2 months 3 months 6 months 12 months

AR 2.01 2.36 2.38 2.97 2.59*
ARIMA 15.82 26.90 36.08 50.42 44.52
TAR 26.32 38.53 50.42 73.45 100.06di

re
ct

 
m

et
ho

ds

VAR 5.00 8.01 11.38 22.41 38.31
AR 1.97 2.09* 2.15* 2.82* 2.88
ARIMA 12.62 14.07 15.31 18.56 22.76
TAR 13.06 14.62 16.96 25.21 32.69

in
di

re
ct

 
m

et
ho

ds

VAR 0.07* 4.93 9.38 15.92 11.37
* Best model

Page 80 of 106

Editorial Office, Dept of Economics, Warwick University, Coventry CV4 7AL, UK

Submitted Manuscript

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

36

Retail Trade Confidence Indicator (v33)
1 month 2 months 3 months 6 months 12 months

AR 2.59 3.08 3.32 4.68 8.04
ARIMA 12.05 14.40 15.64 21.17 31.50
TAR 17.73 24.04 26.92 39.67 59.06
MK-TAR 2.56 3.63 2.41* 4.15 4.00*di

re
ct

 
m

et
ho

ds

VAR 3.70 4.70 4.83 4.00* 11.80
AR 2.47* 3.17 3.50 5.13 8.82
ARIMA 23.79 23.40 23.01 20.79 10.25
TAR 29.27 32.48 34.80 40.68 40.94

in
di

re
ct

 
m

et
ho

ds

VAR 2.96 2.72* 4.05 5.01 7.46
* Best model

Services Confidence Indicator (v39)
1 month 2 months 3 months 6 months 12 months

AR 5.44 10.31 15.51 26.48 43.33
ARIMA 22.17 38.48 53.52 76.93 74.57
TAR 56.92 76.78 86.97 126.94 182.96di

re
ct

 
m

et
ho

ds

VAR 6.20 9.33 12.04 17.95 32.69
AR 5.61 9.94 13.97 20.49 35.87
ARIMA 4.43 7.53 10.46 16.32 20.39
TAR 12.00 16.22 18.57 25.46 41.09

in
di

re
ct

 
m

et
ho

ds

VAR 0.69* 2.34* 7.59* 14.37* 18.90*
* Best model
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Table 6. Average RMSE - Recursive forecasts from January 2001 to December 
2002. Raw data for qualitative indicators according to the type of answer

pp
1 month2 months3 months6 months12 months 1 quarter2 quarters4 quarters

AR 1.00* 1.48* 1.91* 2.74* 3.23* 0.61* 0.57* 0.61*
ARIMA 4.15 5.60 6.71 8.79 9.53 1.79 1.85 2.17
TAR 10.23 24.04 56.91 836.09193363.17 2.55 3.36 4.35
MK-TAR 1.53 2.01 3.06 5.21 10.94 na na na

* Best model

p
1 month2 months3 months6 months12 months 1 quarter2 quarters4 quarters

AR 2.07 2.77 3.40* 4.41* 5.48* 1.87* 2.01* 2.29*
ARIMA 9.94 12.68 15.07 18.91 19.76 6.30 7.46 7.74
TAR 17.83 24.60 31.22 48.50 72.76 10.95 11.73 17.79
MK-TAR 1.92* 3.38 4.27 10.00 42.15 3.69 3.76 5.08
VAR unr 2.00 2.77* 3.48 5.01 6.25 2.48 2.72 2.91
VAR rest 2.41 3.41 4.31 6.06 6.91 2.46 2.79 2.90

* Best model

e
1 month2 months3 months6 months12 months 1 quarter2 quarters4 quarters

AR 2.22 2.87 3.37 4.28 5.21 3.12 3.52 3.47
ARIMA 10.42 13.05 15.00 17.95 18.30 9.40 10.13 7.64
TAR 36.59 39.57 42.46 92.09 167.79 12.38 14.58 19.95
MK-TAR 2.08 2.46* 4.01 5.78 9.27 na na na
VAR unr 1.88* 2.53 3.03* 3.82* 4.42* 1.50* 1.83* 2.19*
VAR rest 2.30 3.00 3.54 4.64 5.47 1.68 1.91 2.26

* Best model

m
1 month2 months3 months6 months12 months 1 quarter2 quarters4 quarters

AR 1.92* 2.77 3.46* 4.75* 5.41* 2.15* 3.13* 3.43*
ARIMA 9.67 13.72 16.81 22.32 23.98 7.02 10.47 11.00
TAR 18.11 39.66 51.40 112.63 781.91 10.53 14.04 15.11
MK-TAR 2.21 2.59* 3.65 5.15 12.09 3.74 4.34 6.92
VAR unr 2.03 3.00 3.74 5.21 6.19 2.79 3.58 4.24
VAR rest 2.23 3.15 3.91 5.46 6.39 2.53 3.22 3.61

* Best model
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mm 
1 month2 months3 months6 months12 months 1 quarter2 quarters4 quarters

AR 0.72* 1.00* 1.19* 1.69* 2.34* 1.24* 1.22* 1.40*
ARIMA 3.66 4.83 5.64 7.89 10.01 3.60 3.50 3.70
TAR 5.17 6.37 7.71 13.06 23.38 4.53 3.78 4.82
MK-TAR 0.96 1.12 2.08 4.40 14.34 1.28 1.34 1.72

* Best model

n
1 month2 months3 months6 months12 months 1 quarter2 quarters4 quarters

AR 0.45 0.58 0.67 0.90 1.19 0.58* 0.62* 1.10*
ARIMA 2.12 2.41 2.58 3.10 3.47 1.45 1.06 1.72
TAR 4.91 6.92 9.70 25.89 526.08 2.21 3.32 5.99
MK-TAR 0.28* 0.29* 0.42* 0.46* 0.73* na na na

* Best model

b
1 month2 months3 months6 months12 months 1 quarter2 quarters4 quarters

AR 3.40 4.90 6.33 8.94 12.00 4.05 4.90 5.38
ARIMA 16.36 23.15 28.27 37.98 41.40 13.84 18.37 19.15
TAR 29.00 39.76 49.61 70.67 89.30 20.48 23.94 24.43
MK-TAR 3.63 6.46 8.76 17.37 67.04 6.74 7.18 11.37di

re
ct

m
et

ho
ds

VAR 3.89 5.85 7.94 12.74 16.51
AR 3.29* 4.80 6.14 8.41* 9.64* 3.93* 4.79* 5.15*
ARIMA 3.31 4.74* 5.97* 8.50 11.19 4.68 6.73 8.77
TAR 5.94 11.02 15.78 96.28 20317.70 6.07 6.63 6.87
VAR unr 4.98 6.09 7.07 9.22 10.83 5.12 5.70 6.34in

di
re

ct
 

m
et

ho
ds

VAR rest 5.47 6.84 8.14 10.59 11.61 4.73 5.31 5.63

* Best model
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Table 7. Evaluation of the different seasonal adjustment methods

a) Mean squared error (MSE) between results from seasonally adjusted data

Average MSE between methods. (v1 … v4b)
TS X12 DA

Average 0.000 0.008 0.173
TS

S.D. 0.000 0.004 0.074
Average 0.000 0.193

X12
S.D. 0.000 0.089
Average 0.000

DA
S.D. 0.000

b) Mean squared error (MSE) between results from trend-cycle estimation

Average MSE between methods. (v1 … v4b)
TS X12 WAV

Average 0.000 0.010 0.369
TS

S.D. 0.000 0.000 0.016
Average 0.000 0.354

X12
S.D. 0.000 0.011
Average 0.000

WAV
S.D. 0.000

c) Revisions of trend-cycle series

S.D of mean absolute deviation
TS X12 WAV

V1 0.000 0.000 0.105
V2 0.041 0.193 4.131
V3P 0.003 0.002 0.965
V3E 0.012 0.002 0.209
V3M 0.023 0.004 1.911
V3B 0.030 0.010 5.495
V4P 0.003 0.035 0.922
V4E 0.016 0.001 1.065
V4M 0.022 0.001 3.685
V4B 0.035 0.015 7.998
V3B* 0.033 0.010 5.536
V4B* 0.035 0.004 5.427

* Indirect method.
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d) Revisions of seasonally-adjusted series

S.D. of mean absolute deviation
TS X12 DA

V1 0.00 0.00 0.00
V2 0.25 0.02 0.00
V3P 0.01 0.01 0.00
V3E 0.00 0.01 0.00
V3M 0.00 0.01 0.00
V3B 0.03 0.03 0.00
V4P 0.04 0.00 0.00
V4E 0.00 0.01 0.00
V4M 0.00 0.01 0.00
V4B 0.02 0.02 0.00
V3B* 0.02 0.02 0.00
V4B* 0.00 0.02 0.00

* Indirect method.

e) Forecasting raw-data or seasonally adjusted data? The Kruskal-Wallis test 
for detecting seasonality (summary of the results)

H0: non-seasonality
HA: seasonality

Rejection of the Null Non- TOTAL
Month 22 148 170
Quarter 4 22 26
TOTAL 26 170 196

Rejection of the Null Non- TOTAL
Month 11.22% 75.51% 86.73%
Quarter 2.04% 11.22% 13.27%
TOTAL 13.27% 86.73% 100.00%
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Table 8. The effects of removing outliers using TS

a) Average variation coeffcient

Monthly indicators
P 28.92
E 5.86
M 32.64
B 979.29

b) Analysis of the sign of the covariance between positive and negative answers

Covariance Negative sign Positive sign TOTAL
Month 32 1 33
Quarter 4 1 5
TOTAL 36 2 38

Covariance Negative sign Positive sign TOTAL
Month 84% 3% 87%
Quarter 11% 3% 13%
TOTAL 95% 5% 100%

c) Tests of equality of variance

H0: Equality of variance
HA: Non-equality of variance

Statistic Rejection of the Null Non-rejection of the Null TOTAL
Month 29 4 33
Quarter 2 3 5
TOTAL 31 7 38

Statistic Rejection of the Null Non-rejection of the Null TOTAL
Month 76% 11% 87%
Quarter 5% 8% 13%
TOTAL 82% 18% 100%
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d) The effects on forecasting accuracy

Economic Sentiment Indicator (v1)
1 month 2 months 3 months 6 months 12 months

AR 0.45* 0.77 1.02 1.51 1.52
ARIMA 1.92 3.21 4.36 7.27 6.25
TAR 4.51 6.72 8.73 14.25 20.04di

re
ct

 
m

et
ho

ds

MK-TAR 0.61 0.75 1.20 2.20 6.15
AR 2.83 2.94 3.04 3.22 1.84
ARIMA 0.47 0.44* 0.41* 0.40* 0.48*
TAR 0.77 0.85 1.04 1.61 2.34

in
di

re
ct

 
m

et
ho

ds

VAR 4.56 4.73 4.89 5.19 3.67
* Best model

p
1 month2 months3 months6 months12 months 1 quarter2 quarters4 quarters

AR 1.50* 1.95* 2.50* 3.19* 3.38 3.25* 3.88* 4.68*
ARIMA 8.52 11.42 13.65 18.01 15.99 11.22 13.92 15.08
TAR 15.53 20.80 26.23 45.54 76.03 20.94 21.29 34.48
MK-TAR 2.02 2.09 2.56 3.34 4.66 6.10 5.85 10.38
VAR unr 1.78 2.49 3.28 4.46 4.65 5.19 6.50 5.87
VAR rest 1.76 2.36 3.06 4.20 3.14* 4.06 5.01 4.98

* Best model

e
1 month2 months3 months6 months12 months 1 quarter2 quarters4 quarters

AR 1.70* 2.30 2.75* 3.33 3.74* 2.51* 2.95* 2.76*
ARIMA 8.53 11.41 13.81 16.64 16.20 7.17 7.96 5.72
TAR 13.31 16.98 19.71 27.24 34.88 10.17 12.37 18.09
MK-TAR 1.70 2.12* 2.96 3.31* 5.03 na na na
VAR unr 1.89 2.54 3.02 3.67 4.23 3.42 3.73 3.08
VAR rest 4.76 4.83 4.92 5.00 4.40 2.88 3.38 3.40

* Best model

m
1 month2 months3 months6 months12 months 1 quarter2 quarters4 quarters

AR 1.54 2.32 3.07 4.53 3.92 4.30* 6.15 6.27
ARIMA 8.68 13.16 16.76 22.93 15.55 14.55 21.98 22.36
TAR 14.48 21.38 28.02 49.10 83.71 22.46 30.87 35.20
MK-TAR 0.68* 0.63* 0.81* 0.94* 0.66* 6.73 7.65 12.68
VAR unr 1.70 2.71 3.61 5.40 6.08 6.80 9.48 8.49
VAR rest 1.56 2.27 2.95 4.45 3.60 4.34 6.00* 6.03*
* Best model
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b
1 month2 months3 months6 months12 months 1 quarter2 quarters4 quarters

AR 2.57* 3.64* 4.78* 6.89* 5.39* 7.17 9.18 9.13*
ARIMA 14.55 21.81 27.82 40.06 42.39 26.40 37.28 37.60
TAR 26.94 39.04 49.91 88.28 138.05 43.16 53.28 53.19
MK-TAR 6.54 7.46 8.83 10.71 12.90 11.16 11.49 19.76di

re
ct

m
et

ho
ds

VAR 3.10 4.34 5.77 9.48 12.17
AR 4.09 4.97 6.00 8.06 7.36 6.69* 8.98* 9.24
ARIMA 4.08 5.28 6.33 9.14 9.39 8.30 13.12 16.61
TAR 5.73 6.87 8.14 12.69 20.76 12.20 13.44 13.61
VAR unr 4.18 5.43 6.91 9.75 11.14 11.56 15.68 14.16in

di
re

ct
 

m
et

ho
ds

VAR rest 4.37 5.45 6.68 9.36 7.27 7.77 10.48 10.47

* Best model
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Table 9.

The next tables should be interpreted as follows: the number and type of detected outliers when adding a new observation are shown in 
columns, while in rows, the moment of time for each outlier can be found.

v2
jan-
01

feb-
01

mar-
01

apr-
01

may-
01

jun-
01

jul-
01

aug-
01

set-
01

oct-
01

nov-
01

des-
01

jan-
02

feb-
02

mar-
02

apr-
02

may-
02

jun-
02

jul-
02

aug-
02

set-
02

oct-
02

nov-
02

des-
02

01- AO AO
10- AO AO
07- AO AO AO AO AO AO AO AO AO AO
06- AO AO AO AO AO AO AO AO AO AO
10- LS LS LS LS LS LS LS LS
11- TC
12- AO
01- LS LS
AO: Additive Outlier, TC: Transitory Change, LS: Level shift.

v3b1 jan-
01

feb-
01

mar-
01

apr-
01

may-
01

jun-
01

jul-
01

aug-
01

set-
01

Oct-
01

nov-
01

des-
01

jan-
02

feb-
02

mar-
02

apr-
02

may-
02

jun-
02

jul-
02

aug-
02

set-
02

oct-
02

nov-
02

des-
02

03-91 TC TC TC TC TC TC TC TC TC TC TC TC TC TC
05-97 LS

AO: Additive Outlier, TC: Transitory Change, LS: Level shift.

v3m
jan-
01

feb-
01

mar-
01

apr-
01

may-
01

jun-
01

jul-
01

aug-
01

set-
01

oct-
01

nov-
01

des-
01

jan-
02

feb-
02

mar-
02

apr-
02

may-
02

jun-
02

jul-
02

aug-
02

set-
02

oct-
02

nov-
02

des-
02

03-91 TC TC TC TC TC
07-96 AO AO AO AO AO AO AO AO AO AO AO AO AO AO AO AO AO AO AO AO
05-00 AO AO AO AO AO
05-01 LS LS LS LS LS

AO: Additive Outlier, TC: Transitory Change, LS: Level shift.

1 No outlier is detected for v3p.
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v3e
jan-
01

feb-
01

mar-
01

apr-
01

may-
01

jun-
01

jul-
01

aug-
01

set-
01

oct-
01

nov-
01

des-
01

jan-
02

feb-
02

mar-
02

apr-
02

may-
02

jun-
02

jul-
02

aug-
02

set-
02

oct-
02

nov-
02

des-
02

02-91 TC
11-92 LS LS LS LS

AO: Additive Outlier, TC: Transitory Change, LS: Level shift.

v8b
jan-
01

feb-
01

mar-
01

apr-
01

may-
01

jun-
01

jul-
01

aug-
01

set-
01

oct-
01

nov-
01

des-
01

jan-
02

feb-
02

mar-
02

apr-
02

may-
02

jun-
02

jul-
02

aug-
02

set-
02

oct-
02

nov-
02

des-
02

07-85 LS
01-88 TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC
02-93 TC TC TC
01-97 AO AO AO AO AO AO AO AO AO AO AO AO AO AO AO AO AO AO AO AO AO AO AO
06-01 AO
07-01 AO

AO: Additive Outlier, TC: Transitory Change, LS: Level shift.
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v8m2 jan-
01

feb-
01

mar-
01

apr-
01

may-
01

jun-
01

jul-
01

aug-
01

set-
01

oct-
01

nov-
01

des-
01

jan-
02

feb-
02

mar-
02

apr-
02

may-
02

jun-
02

jul-
02

aug-
02

set-
02

oct-
02

nov-
02

des-
02

07-85 LS LS LS LS LS LS LS LS LS LS LS LS LS LS LS LS LS LS LS
03-86 TC TC TC TC TC TC TC TC TC TC TC TC TC
05-86 AO
09-87 AO
01-88 AO AO AO AO TC AO AO AO AO AO TC TC TC TC TC TC TC TC TC TC TC TC TC
11-88 TC TC TC TC TC TC TC TC TC LS TC TC TC
03-89 AO TC AO
05-90 TC
01-93 AO AO
10-98 AO
03-99 AO AO AO AO AO AO AO AO AO AO AO AO
01-00 AO AO AO AO AO
02-00 AO AO AO AO AO AO
07-01 AO AO AO AO AO AO AO AO AO AO AO AO AO

AO: Additive Outlier, TC: Transitory Change, LS: Level shift.

v8e
jan-
01

feb-
01

mar-
01

apr-
01

may-
01

jun-
01

jul-
01

aug-
01

set-
01

oct-
01

nov-
01

des-
01

jan-
02

feb-
02

mar-
02

apr-
02

may-
02

jun-
02

jul-
02

aug-
02

set-
02

oct-
02

nov-
02

des-
02

03-99 AO AO AO AO AO AO AO AO AO AO AO AO AO
12-01 AO AO

AO: Additive Outlier, TC: Transitory Change, LS: Level shift.

2 No outlier is detected for v8p.
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Sub-sample of variables taken in order to analyse differences between Information Criterion 

DIRECT METHODS
AR Composite
Worksheet: direct AR raw data

v1
v2
v12
v28
v33
v39

adjusted
v1

VAR All composite indicators
Worksheet: direct VAR raw and adjusted

INDIRECT METHODS
AR Composite
Worksheet: indirect VAR raw data

v1
v2
v12
v28
v33
v39

adjusted
v1

VAR Composite
Worksheet: indirect VAR raw data

v1
v2
v12
v28
v33
v39

adjusted
v1

VAR restricted
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Indicators
raw data monthly quarterly
Worksheet: VAR restricted v3 v10

v9 v11
v16
v29
v36

VAR unrestricted
Indicators
raw data monthly
Worksheet: VAR unrestricted v4

v8
v16
v32
v34
v38
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Indicators
raw data monthly quarterly

v3p v10b
v4e v25b
v7p v27b
v13p
v15p
v19p
v23p
v31p
v37p
v13e
v18e
v20e
v29e
v34e
v37e
v43e
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COMPOSITE AIC SIC HQC AIC
raw SIC
v1 -417.5935 -417.5755 -417.5862 HQC
v2 -325.6424 -325.6254 -325.6355
v12 -306.8569 -306.8399 -306.85
v28 -452.8738 -452.8568 -452.8669
v33 -412.751 -412.7332 -412.7438
v39 -135.0856 -135.053 -135.0727

adjusted
v1 -417.5935 -417.5755 -417.5862

INDICATORS
raw
monthly
v3p -414.5567 -414.5397 -414.5498
v4e -269.5258 -269.5088 -269.5189
v7p -373.8947 -373.8777 -373.8878
v13e -222.3528 -222.3344 -222.3453
v13p -299.7041 -299.6869 -299.6972
v15p -233.9184 -233.9014 -233.9115
v18e -224.9946 -224.9765 -224.9873
v19p -319.0595 -319.0425 -319.0526
v20e -221.4247 -221.4077 -221.4178
v23p -270.2258 -270.2083 -270.2187
v29e -531.3928 -531.3758 -531.3859
v31p -379.8651 -379.8481 -379.8582
v34e -486.5867 -486.5696 -486.5798
v37e -474.9216 -474.9038 -474.9143
v37p -428.2354 -428.2176 -428.2282
v43e -124.3674 -124.3347 -124.3544

quarterly
v10b -209.9952 -209.9612 -209.9819
v25b -71.1007 -71.0597 -71.0856
v27b -64.7831 -64.7421 -64.768
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COMPOSITE
AIC SIC HQC

raw -3938.2663 -3938.0887 -3938.1971
adjusted -3863.5138 -3863.3362 -3863.4446

AIC Akaike information criteria
SIC Schwarz criterion or Bayesian information criterion
HQC Hannan-Quinn criterion
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COMPOSITE AIC SIC HQC
raw

v1 -358.2062 -358.1892 -358.1993 v1
-256.5865 -256.5694 -256.5796
-476.0159 -475.9988 -476.009
-225.2675 -225.2497 -225.2603
-396.5351 -396.5181 -396.5282
-419.6729 -419.6559 -419.666
-281.4471 -281.4301 -281.4402
-449.2374 -449.2203 -449.2305
-529.8743 -529.8573 -529.8674
-546.4626 -546.4455 -546.4557
-400.5203 -400.5033 -400.5134
-512.0821 -512.0651 -512.0752

v2 -476.0159 -475.9988 -476.009 v2
-358.2062 -358.1892 -358.1993
-256.5865 -256.5694 -256.5796

v12 -225.2675 -225.2497 -225.2603 v12
-396.5351 -396.5181 -396.5282
-419.6729 -419.6559 -419.666
-281.4471 -281.4301 -281.4402

v28 -449.2374 -449.2203 -449.2305 v28
-529.8743 -529.8573 -529.8674

v33 -508.9507 -508.9329 -508.9435 v33
-373.8325 -373.8146 -373.8252
-485.1502 -485.1324 -485.143

v39 -166.6995 -166.6668 -166.6865 v39
-196.79 -196.7573 -196.777

-182.8637 -182.8311 -182.8508

adjusted
v1 -358.2062 -358.1892 -358.1993

-256.5865 -256.5694 -256.5796
-473.4402 -473.4231 -473.4333
-247.1958 -247.1775 -247.1883
-360.8181 -360.8011 -360.8112
-407.2603 -407.2432 -407.2534
-259.5352 -259.5181 -259.5283
-443.5743 -443.5573 -443.5674
-529.8743 -529.8573 -529.8674
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AIC Akaike information criteria
SIC Schwarz criterion or Bayesian information criterion
HQC Hannan-Quinn criterion
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Economic Sentiment Indicator

Industrial Confidence Indicator (v7+v4-v6)/3

Consumer Confidence Indicator (v14+v16-v19+v23)/4

Construction Confidence Indicator (v30+v31)/2

Retail Trade Confidence Indicator (v34-v35+v37)/3

Services Confidence Indicator (v40+v41+v42)/3
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For Peer Review

COMPOSITE AIC SIC HQC
raw
v1 -4235.1686 -4234.9643 -4235.0858

v2 -1100.2962 -1100.2404 -1100.2736
-1162.5494 -1162.4939 -1162.5269
-1278.3017 -1278.2472 -1278.2796

v12 -1229.053 -1228.9986 -1229.0309
-887.3439 -887.2885 -887.3214
-1028.621 -1028.5652 -1028.5983

-1433.4271 -1433.3756 -1433.4062

v28 -887.0438 -886.988 -887.0212
-801.3756 -801.3209 -801.3534

v33 -674.325 -674.2663 -674.3012
-756.8375 -756.7789 -756.8137
-639.7203 -639.6617 -639.6965

v39 -407.1731 -407.0775 -407.1351
-417.0883 -416.9927 -417.0503
-437.4502 -437.3531 -437.4117

adjusted
v1 -4154.8225 -4154.6181 -4154.7397

AIC Akaike information criteria
SIC Schwarz criterion or Bayesian information criterion
HQC Hannan-Quinn criterion
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For Peer Review

INDICATORS AIC SIC HQC
raw
monthly
v3 -726.6391 -726.605 -726.6253
v9 -479.1296 -479.0927 -479.1146
v16 -487.9228 -487.8888 -487.909
v29 -999.5321 -999.4981 -999.5183
v36 -844.0026 -843.9684 -843.9887

quarterly
v10 -285.8194 -285.7514 -285.7927
v11 -238.1692 -238.1012 -238.1425

AIC Akaike information criteria
SIC Schwarz criterion or Bayesian information criterion
HQC Hannan-Quinn criterion
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For Peer Review

INDICATORS AIC SIC HQC
raw
monthly
v4 -1162.5494 -1162.4939 -1162.5269
v8 -1184.0465 -1183.9907 -1184.0238
v16 -715.7464 -715.6953 -715.7257
v32 -1152.9515 -1152.8957 -1152.9289
v34 -685.9522 -685.8964 -685.9295
v38 -755.4727 -755.4163 -755.4498

AIC Akaike information criteria
SIC Schwarz criterion or Bayesian information criterion
HQC Hannan-Quinn criterion
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