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LOCAL LIKELIHOOD ESTIMATORS IN A REGRESSION

MODEL FOR STOCK RETURNS
1

Uwe Christian Jönck

Department Mathematik (SPST), Universität Hamburg

Bundesstr. 55, 20146 Hamburg, Germany

30 March 2007

Abstract

We consider a non-stationary regression type model for stock returns in which the

innovations are described by four-parameter distributions and the parameters are as-

sumed to be smooth, deterministic functions of time. Incorporating also normal distri-

butions for modelling the innovations, our model is capable of adapting to light-tailed

innovations as well as to heavy-tailed ones. Thus, it turns out to be a very flexible

approach. Both, for the fitting of the model and for forecasting the distributions of

future returns, we use local likelihood methods for estimation of the parameters. We

apply our model to the S&P500 return series, observed over a period of twelve years.

We show that it fits these data quite well and that it yields reasonable one-day-ahead

forecasts.

AMS 2000 classifications: primary: 62P20; secondary: 62G08, 91B70, 91B84

Key words and phrases: distributional forecasts, financial time series, local likelihood

estimation, local stationarity, Monte Carlo test, non-stationary time series, volatility

Short title: Local likelihood modelling

1 Introduction

During the past twenty years remarkable efforts were made to develop and investigate models

for time series of stock returns, i.e. for time series Xt = log(Pt/Pt−1), t = 1, . . . , n, where

Pt represents the price of a stock (or a stock index) at time t. In doing so the ARCH and

GARCH models of Engle (1982) and Bollerslev (1986) were in the centre of interest. The

basic GARCH(p, q) model takes the form

(1.1) Xt = σtεt,

with white noise {εt} and volatilities given by

σ2
t = α0 +

p∑

i=1

αiX
2
t−i +

q∑

j=1

βjσ
2
t−j .

There have been various modifications on this approach, which led to more sophisticated but

on the other hand also more complicated models. For an overview see for example Bollerslev

1This work was supported by Deutsche Forschungsgemeinschaft (DFG grant DR 271/4–1).
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2 LOCAL LIKELIHOOD ESTIMATORS IN A REGRESSION MODEL FOR STOCK RETURNS

et al. (1994) or Gouriéroux (1997). These models succeed in reproducing various stylized

facts. However, especially when dealing with long time series, they also have some draw-

backs, such as the occurence of the so-called IGARCH effect in the popular GARCH(1,1)

model. (A critical discussion of this model can be found in Stărică, 2003.) Mikosch and

Stărică (2003, 2004) argue that this effect could be due to the fact that time series of log

returns are actually not stationary, which is one of the basic paradigms of the GARCH class

models. Furthermore, they show that also the so-called long range dependence effects in the

second moment structure can be explained if the underlying time series is non-stationary.

The assumption of stationarity might also seem questionable especially for long financial

time series, because the financial markets and the general economic framework may change

over long time periods. Consequently, the concept of stationarity might not be adequate

for a financial time series model. A weakening of the strong requirement of stationarity

might be the concept of a locally stationary behaviour of the time series: this means that for

small time intervals the time series is nearly stationary, whereas over longer time intervals

its (stochastic) behaviour changes gradually.

Drees and Stărică (2002) propose a very simple regression-based model that drops the

assumption of stationarity. For the returns Xt Drees and Stărică presume a multiplicative

structure, similar to that of (1.1). The difference to the GARCH models lies in the mod-

elling approach for the volatilities σt. In the GARCH class models these are determined by

endogenous factors, namely by past volatilities as well as past returns. In contrast to that,

Drees and Stărică assume the volatilities to be driven by some unknown (presumably rather

complex) market conditions, and hence to be determined exogenously. However, this exte-

rior mechanism might be too complex to develop a realistic stochastic model for it. For this

reason Drees and Stărică simply model the volatilities as a smooth, deterministic function

of time. Thus, their basic model is the following:

(1.2)





Xt = µ + σ(t)εt, t = 1, 2, . . . , n, µ = const.,

{εt : t = 1, . . . , n} ∼ IID(0, 1),

σ(t), t = 1, 2, . . . , n, a smooth, deterministic function of time.

Considering the centered returns Rt = Xt − µ, we have

R2
t = σ(t)2 + σ(t)2(ε2

t − 1).

Hence, (1.2) can be interpreted as a regression model for the squared volatilities, and non-

parametric regression techniques can be applied for estimating the volatilities. The innova-

tions εt are modelled by asymmetric Pearson Type VII distributions, which generalize the

class of t-distributions (see below), and thus allow for heavy tails. Drees and Stărică fit this

model to the daily returns of the closing prices of the Standard & Poor’s 500 (S&P500)

stock index from 2 January 1990 to 21 February 2002, depicted in Figure 1.1. They esti-

mate the volatilities by a simple Nadaraya-Watson kernel estimator and they use a maximum

likelihood (ML) estimator to determine the parameters of the t-distributions. They show

that their model is competitive to the conventional GARCH(1,1) and EGARCH(1,1) models

concerning the fitting of the data as well as the forecasting of future return distributions.

In this paper (which can be regarded as a continuation of the work of Drees and Stărică,

2002) we take up and refine the above regression model. However, instead of the assump-
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Figure 1.1. Daily returns of the closing prices of the S&P500 index from 2 January 1990

to 21 February 2002.

tion of identically distributed innovations, we model the parameters of the distributions as

smooth functions of time. Furthermore, we expand the model by modelling innovations

with very light tails by normal distributions. These two new aspects increase the model’s

flexibility. For both, the fitting of this refined model to the S&P500 return series and the

forecasting of future return distributions, we use local likelihood estimators. These esti-

mators combine the idea of ML estimation and nonparametric regression techniques. We

discuss their asymptotic behaviour, which enables us to construct asymptotic confidence

intervals for the true parameters. The theoretical background for these asymptotics is based

on a paper of Aerts and Claeskens (1997). Assessments of the estimated parameters and the

estimated forecasts, respectively, show that our approach seems to provide a good fitting of

the data as well as reasonable forecasts.

The paper is organized as follows: in Section 2 we present the underlying model. In

Section 3 we give a brief overview of the method of local likelihood estimation, and we

discuss the construction of asymptotic confidence intervals. In Section 4 we fit the model

to the S&P500 data and evaluate the results with several testing devices. We also provide

forecasts of future return distributions, which is done in Section 5. Section 6 concludes.

2 Refinement of the model of Drees and Stărică

We consider the regression model (1.2) from the previous section. In the following, instead of

the returns Xt we consider the centered returns Rt = Xt−µ. Then we have (approximately)

(2.1) Rt = σ(t)εt ≈ Xt − Xn,

regarding Xn = 1/n
∑n

j=1 Xj as an approximation for µ = EXt, and neglecting an estima-

tion error that might occur. We assume the innovations εt—and, consequently, the centered

returns, too—to be independent and distributed with density

g(x; u+, u−, v+, v−) =
1

2

(
g(|x|; u−, v−)

� {x < 0} + g(x; u+, v+)
� {x ≥ 0}

)
,

u± ∈ [0, 2), τ± ∈ (0,∞),
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4 LOCAL LIKELIHOOD ESTIMATORS IN A REGRESSION MODEL FOR STOCK RETURNS

where

(2.2) g(x; u, v) =





2Γ(1/u)
Γ(1/u−1/2)

√
π
·
√

u
v

(
1 +

(
x
v

)2
u
)−1/u � {x ≥ 0}, u > 0,

2
v
√

π
exp

{
−

(
x
v

)2
}

� {x ≥ 0}, u = 0.

The corresponding cdf is denoted G(·; u+, u−, v+, v−), or sometimes just G. The parameters

u+ and u− essentially determine the shape of the density g: for u > 0 the term 1/2g(·; u, v)

equals the right tail of the density of a t-distribution with 2/u − 1 degrees of freedom and

scale parameter v/(2 − u)1/2 (which is sometimes also referred to as a Pearson Type VII

distribution, cf. Johnson and Kotz, 1970, p. 114ff.), and for u = 0 it equals the right tail of

the density of a normal distribution with mean zero and variance v2/2. The parameters v+

and v− behave like scale parameters for the positive and negative parts of the distribution,

respectively. It is easily seen that G has finite variance iff u+, u− < 2/3. This modelling

approach is more flexible than that of Drees and Stărică (2002), who always assume u+, u− >

0. In contrast, our model can adapt to heavy-tailed as well as light-tailed innovations—as

we shall see later on.

Note that for each x we have g(x; u, v) → g(x; 0, v) as u → 0. Hence, g(x; 0, v) can

also be considered an approximation to g(x; u, v) for small values u. In the following this

property is often referred to as the “normal approximation” of the tails.

Another nice property of the law G is that it allows for asymmetry in the tails, and thus is

quite flexible. It may appear somewhat inconsequent to model the innovations (and thus the

centered returns)—presumed to have mean zero—by a class of distributions that in general

do not have this property (the distributions G are in general not centered, but only have

median zero). However, for practical applications this is not of great importance: indeed,

the model assessments in Section 4 will show that the means of the fitted distributions are

approximately equal to zero.

We further refine the model of Drees and Stărică by dropping their assumption of identi-

cally distributed innovations. Instead, we assume the parameters to be smooth, deterministic

functions of time, i.e. we have as an initial approach

εt ∼ G(·; u+(t), u−(t), v+(t), v−(t)).

To avoid an overparametrization resulting from the additional scale parameter σ(t), we

introduce new parameters τ+(t) := σ(t)v+(t) and τ−(t) := σ(t)v−(t), which leads to the

modelling assumption of independent centered returns

(2.3) Rt ∼ G(·; u+(t), u−(t), τ+(t), τ−(t)).

Hence, our model is completely determined by the distributions of the centerd returns, given

by (2.3), and the smooth parameter function

θ : {1, . . . , n} → [0, 2)2 × (0,∞)2, t 7→




θ1(t)

θ2(t)

θ3(t)

θ4(t)




≡




u+(t)

u−(t)

τ+(t)

τ−(t)




.
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LOCAL LIKELIHOOD ESTIMATORS IN A REGRESSION MODEL FOR STOCK RETURNS 5

In the following, we shortly write G(·; θ) or Gθ, instead of G(·; u+, u−, τ+, τ−), and for the

corresponding density we write gθ. Note that in this approach the volatilities only play

a subordinate role as part of the parameters τ+ and τ−. However, assuming that for the

innovations we have Var(εt) = 1, the volatilities can easily be regained from the equation

σ2(t) = Var(Rt).

3 Local likelihood estimation

For fitting our model to data we use the method of local likelihood estimation. In this

section, we first give a brief overview of its basic concept. Subsequently, based on a paper

by Aerts and Claeskens (1997), we investigate the asymptotics of these estimators, and we

provide a device for constructing approximate confidence intervals for the parameters. We

discuss how these ideas carry over to our model.

The basic concept. Consider a sample (x1, y1), . . . , (xn, yn). The data xi denote distinct

points of time in some interval [a, b]. These might either be fixed or given by a random

design. The corresponding yi’s are realizations of independent, real-valued random variables

Yi. Suppose that each Yi is distributed according to some pdf f(·, si), where the parameter

si ∈ � d is determined by a function θ : xi 7→ θ(xi) = si. Assuming this parameter function θ

to be sufficiently smooth, each of its components θk can be approximated locally by a Taylor

polynomial of degree pk. Thus, for xi close to a fixed point x we have the approximation

(3.1) θk(xi) ≈
pk∑

j=0

θ
(j)
k (x)

j!
(xi − x)j ≡

pk∑

j=0

βkj(xi − x)j ,

where in this notation the dependence of βkj from x is omitted. For estimating the coeffi-

cients βkj of the local polynomials, we consider the local likelihood function

(3.2)





Ln(β; h, x) =

n∑

i=1

log f


yi,

p1∑

j=0

β1j(xi − x)j , . . . ,

pd∑

j=0

βdj(xi − x)j


Kh(xi − x),

β = (βT
1 , . . . , βT

d )T = (β11, . . . , β1p1
, . . . , βd1, . . . , βdpd

)T .

Here K denotes a kernel, h is a bandwidth (or smoothing parameter), and Kh(·) = K(·/h)/h.

Usually K is a unimodal symmetric pdf, preferably with compact support. Maximizing

Ln(β; h, x) with respect to β yields the local likelihood estimates β̂kj . Consequently, we have

estimates θ̂
(j)
k (x) = j!β̂kj for the value of the parameter function in x and its derivatives,

respectively. For further information on local likelihood estimation and local polynomial

fitting cf.Aerts and Claeskens (1997), Fan et al. (1998), or Fan and Gijbels (1996).

Asymptotics. In the following, we assume the design points xi to be generated according

to xi = G−1
(
(i − 1)/(n − 1)

)
, with G(x) =

∫ x

−∞ fX(t)dt and a design density fX with

supp(fX) = [a, b]. Furthermore, we assume the kernel K to be a symmetric pdf with compact

support [−1, 1]. Aerts and Claeskens (1997) show that under some additional regularity

conditions the local likelihood estimators are consistent and asymptotically normal. (Mainly,

these regularity conditions are the classical conditions on the densities f(·, θ), needed for
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6 LOCAL LIKELIHOOD ESTIMATORS IN A REGRESSION MODEL FOR STOCK RETURNS

proving consistency and asymptotic normality of ML estimators; cf. Aerts and Claeskens,

1997, conditions (R1)–(R6), for details.) More precisely, they show that

√
nh

{((
β̂1(x) − β?

1(x)
)T

Hp1
, . . . ,

(
β̂d(x) − β?

d(x)
)T

Hpd

)T

− 1√
nh

Bnh(x)

}

D−→ N (0,V(x)),

(3.3)

as n → ∞, with β?
k(x) = (β?

k1(x), . . . , β?
kpk

(x))T denoting the vector of the true coefficients

of the local polynomials, i.e. β?
kj(x) = θ

(j)
k (x)/j!, and employing the indexing given in

(3.2). The matrices Hpk
are diagonal matrices with entries h0, . . . , hpk , whereas the other

quantities depend in a rather complicated way on the true parameters θ
(j)
k (x), the kernel

K, the (log-)densities and its derivatives and on the design point x. Again, cf. Aerts and

Claeskens (1997) for details.

Confidence intervals. The results from the previous paragraph provide a device for

constructing approximate pointwise confidence intervals for the true coefficients of the local

polynomials. With eij denoting the vector with “1” as ij-entry and “0” elsewhere (i.e., we

have eT
ijβ = βij), from (3.3) we get

√
nh

{(
β̂ij(x) − β?

ij(x)
)
hj − 1√

nh
eT

ijBnh(x)

}
D−→ N (0, eT

ijV(x)eij).

Following the argumentation of Fan and Yao (2003), p. 243, we neglect the asymptotic bias

term. Hence, approximately, we have

L
(
β̂i0(x) − β?

i0(x)
)
≈ N

(
0,

1

nh
eT

i0V(x)ei0

)
.

Replacing the parameters θi(x) in the expression for the asymptotic covariance matrix V(x)

by the corresponding estimates θ̂i(x) we get an approximate covariance matrix V̂(x). Thus,

by [
β̂i0(x) − uα/2

(
V̂i0,i0(x)/(nh)

)1/2
; β̂i0(x) + uα/2

(
V̂i0,i0(x)/(nh)

)1/2
]

we get an approximate confidence interval at the level 1 − α for the true parameter θi(x),

where uα/2 is the standard normal (1 − α/2)-quantile.

Bandwidth selection. A crucial point in local likelihood estimation is the choice of an

appropriate bandwidth h. This acts as a smoothing parameter in nearly the same way as

it does in ordinary nonparametric regression. The above asymptotics motivate to chose

a bandwidth that minimizes the asymptotic mean squared error of the estimates, which

is a function of h and also depends on some unknown constants. The latter ones have

to be estimated by plug-in procedures. (Cf. also Aerts and Claeskens, 1997.) Another

approach, which is not based on the above asymptotics, is discussed by Fan et al. (1998):

they derive estimates for the bias and variance terms, and thus for the mean squared error

(MSE) of the local likelihood fit. Following their approach the bandwidth is chosen such

that the estimated MSE, which is a function of h, is minimal. This method is especially

feasible for the computation of local bandwidths. A nice alternative to the above bandwidth

selection procedures is a cross-validation method, proposed by Aerts and Claeskens (1997).

In this fully data-driven approach for a given bandwidth h the parameters θ(x1), . . . , θ(xn)
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LOCAL LIKELIHOOD ESTIMATORS IN A REGRESSION MODEL FOR STOCK RETURNS 7

are estimated, where the ith estimate is based on the sample without the ith oberservation

(xi, yi). The resulting parameter estimates—denoted θ̂[i](xi)—are then plugged into the log-

likelihood function. Doing these computations for varying bandwidths h yields the “cross-

validation” function

CV (h) =
n∑

i=1

log f(yi; θ̂
[i](xi)),

which is then maximized with respect to h. This cross-validation approach is easy to im-

plement and we will also consider it later for our estimation problems in Sections 4 and

5.

Applying the asymptotics to our model. For applying the above asymptotics to our

modelling approach, we have to consider some minor modifications to our model. After

centering the returns (cf. (2.1)), we are given observations {(t, Rt) : t = 1, . . . , n}. For the

purpose of asymptotic investigations, now we consider a rescaling of the time points by the

transformation

(3.4) s 7→ s − 1

n − 1
=: s̃, 1 ≤ s ≤ n,

which maps the time points into the unit interval. These rescaled design points fulfill

the assumption on the points xi from the above paragraph on asymptotics with fX(x) =
�

[0,1](x). The parameter function can be rescaled in the same way, setting θ̃(t̃) := θ(t).

Note that this transformation is only necessary for the application of the asymptotic results

and the computation of the confidence intervals. It has no effects on practical aspects of

the estimation. Therefore, when it is obvious that an assertion is correct for the “original”

points of time (i.e. for t = 1, . . . , n) as well as for the rescaled ones (i.e. for the points t̃), for

ease of notation we often silently omit the notation for the rescaling. Especially, we do so

when considering the parameter function and the local polynomials.

In addition, we have to check whether the regularity conditions on the densities hold

for our model. Actually, this is the case for a suitable submodel, namely for the family

{Gθ : θ ∈ Θ}. Here the parameter space is defined as Θ := (u, u)2 × (τ , τ )2, with arbitrary

values 0 < u < u < 2/3 and 0 < τ < τ < ∞. The verification of the regularity conditions is

lengthy but quite standard. It is based upon showing diverse interchangeability conditions

for integration and differentiation of the densities and rough estimation inequalities for the

derivatives of the (log-)densities; it also uses the fact that Θ is compact. The complete

proof is given in Jönck (2005). Consequently, for estimations within this submodel we can

calculate approximate confidence intervals for the true parameters according to Section 3.

Since θ 7→ (VarGθ)
1/2 is differentiable in θ, an application of the Delta method yields

approximate confidence intervals for the volatilities, too.

4 Modelling the S&P 500 return series

In this section we fit our model to the returns of the closing prices of the S&P500 return

series from 2 January 1990 to 21 February 2002 (cf. Figure 1.1), which is a total of n = 3062

observations. We discuss the numerical results and check whether they fulfill the model

assumptions.
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Fitting the model. We estimate the (rescaled) parameter function θ(x) for each of the

points x = x̃1, . . . , x̃n, with x̃i = (i − 1)/(n − 1), cf. equation (3.4). To this end, for each

such x the optimization problem

(4.1)





max
β

Ln(β; h, x) under constraints: (β10(x), . . . , β40(x))
T ∈ Θ,




p1∑

j=0

β1j(x̃i − x)j , . . . ,

p4∑

j=0

β4j(x̃i − x)j




T

∈ Θ, x̃i ∈ [x − h, x + h],

is solved, where Ln(β; h, x) is the local likelihood function defined by (3.2), employing the

densities {gθ : θ ∈ Θ}. For the kernel K we use the Epanechnikov kernel, which is given

by K(u) = 3/4(1 − u2)+. Using the notation from (3.2), the vector (β10(x), . . . , β40(x))T

corresponds to θ(x) = (u+(x), u−(x), τ+(x), τ−(x))T . For the computations we use the

fmincon routine implemented in Matlab (V.7). The meaning of the first constraint in (4.1)

is obvious, the second one ensures that all evaluations of the local polynomials lie in the

parameter space, otherwise Ln(β; h, x) is not defined. We take Θ as defined in Section 3,

with u = 10−2, u = 2/3, τ = 10−4 and τ = 5.

We compute the cross-validation function CV (·) for bandwidths ranging from 0.010 to

0.075 (cf. Section 3): for bandwidths between 0.020 and 0.050 it is very flat, and it has a (not

very distinct) maximum at hCV = 0.026. For our computations we choose the bandwidth

h = 0.030.

We use local linear fits for all four paramters, i.e. p1 = · · · = p4 = 1. It is preferable to

use the same degree of adaption for all parameters, since the expression for the asymptotic

bias is essentially of an order of the smallest such polynomial degree. In addition, the use of

odd-degree polynomial fits reduces boundary effects. (For details see Aerts and Claeskens,

1997.) Our choice of local linear fits takes account of both aspects and at the same time

keeps the number of optimization parameters to a minimum.

In addition, we use the normal approximation from Section 2 in the following way: if for

some x the local likelihood estimation yields an estimate û+(x) = u, we can assume the true

value u+(x) to be very close to zero, thus implying a very light right tail of the corresponding

return distribution L (Rt). According to the above ideas, then we can approximate the

right tail of the return distribution by that of a N (0, τ2
+/2)-distribution, and thus û+(x)

is assigned the value zero. Likewise we proceed if û−(x) = u. In case of either û+(x) or

û−(x) being zero, the conditions for the asymptotic results by Aerts and Claeskens (1997)

are violated. Therefore, in such cases we do not provide asymptotic confidence intervals for

any of the four paramters u+(x), u−(x), τ+(x) and τ−(x).

Numerical results. The estimates for the parameter functions are shown in Figure 4.1.

Apparently, the normal tail approximation is widely employed, and so it seems a valuable

tool to enhance the model’s ability of assessing light-tailed distributions.

One can clearly see that for most points of time we have û+ < û−, i.e. the left tails of the

estimated distributions are heavier than the corresponding right tails. This might reflect the

well-known fact that in time series of stock returns the extremely large negative returns are

usually larger in absolute value than the extremely large positive returns. Furthermore, the

estimated distributions show some sort of symmetric behaviour in the tails. For example,
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Figure 4.1. The estimated parameter functions û+, û−, τ̂+ and τ̂− (bold solid lines) together

with the corresponding asymptotic pointwise 95%-confidence intervals (dotted lines), where

applicable, and the bootstrap confidence intervals (thin solid lines).

whenever the left tails of the distributions get heavier, i.e. û− increases, the parameter

function û+ also tends to increase and vice versa. Apparently, such a symmetric behaviour

can be observed in the estimated scale parameters τ̂+ and τ̂−, too, where this symmetry

seems even much more distinctive. Remember that we defined τ±(t) = σ(t)v±(t). Thus,

due to the symmetric behaviour of the scale parameters one might try to simplify the

model in such a way that only the volatility σ(t) is presumed a smooth function and the

parameters v+(t) and v−(t) are presumed global constants. However, it turns out that the

quotient τ̂+(t)/τ̂−(t) is strongly fluctuating with varying t and that the confidence intervals

for τ+(t)/τ−(t) (which can be derived easily from the use of the Delta method) are nearly

disjoint for many points of time.

The estimates û+ and û− also seem to exhibit a certain kind of periodicity, which ex-

presses through the fact that the periods between two consecutive points of maximum (and

minimum, respectively) are approximately of the same length. This effect might be due to

the choice of the rather small bandwidth h—for the estimation of the parameters at any point

of time less than 185 observations are taken into account. Indeed, for larger bandwidths this

“periodicity” appears much less distinct.

Figure 4.1 also shows the pointwise confidence intervals for the true parameters, as

derived in Section 3 (depicted in dotted lines). Since we can only provide such asymptotic

confidence intervals for those points of time for which no use of the normal approximation

is made for either tail (see above), we also compute 95%-bootstrap confidence intervals for

each of the estimated parameters (depicted in thin solid lines in Figure 4.1). To this end,

we simulate a total of J = 1000 time series samples {R∗j
t : t = 1, . . . , n}, with independent
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Figure 4.2. Left: The annualized volatilities σ̂a (bold solid lines) with the corresponding

asymptotic pointwise 95%-confidence intervals (dotted lines), where applicable, and the boot-

strap confidence intervals (thin solid lines). Right: The estimated annualized volatilities

from our local likelihood estimation approach (solid lines) compared to the estimates from

Drees and Stărică (2002), which are based on a kernel estimate (dotted lines).

variables

(4.2) R∗j
t ∼ Gθ̂(t), t = 1, . . . , n, j = 1, . . . , J.

For each of these simulated samples we compute likelihood estimates {θ̂∗j(t) : t = 1, . . . , n}.
Thus, for every t and every k (denoting one of the parameter components) the upper and

lower 2.5%-quantiles of the set {θ̂∗j
k (t) : j = 1, . . . , J} yield a 95%-boostrap confidence inter-

val for the parameter θ̂k(t). This is a very simple procedure for the construction of bootstrap

confidence intervals. However, the resulting intervals should be interpreted carefully, because

we do not know anything about their (asymptotic) properties and thus their accuracy. In

addition, we do not know the effects on these intervals which occur due to the fact that for

parameter values u+ or u− close to zero our model switches from t-distributions to normal

tails. Nevertheless, these bootstrap confidence intervals are helpful to get a first impression

on how the local likelihood estimates in our modelling approach behave.

For u+ and u− the asymptotic confidence intervals (as well as the bootstrap confidence

intervals) are rather wide, in some cases they cover nearly all of the space (u, u). This

is somewhat unsatisfying, because it yields little information about the accuracy of our

estimated functions for the parameters u+ and u−: these confidence intervals would as well

allow for parameter functions u+ and u− of a different shape, for example they would allow

for globally constant parameter functions. It might therefore be worth thinking about a

simplified approach, modelling u+ and u− as global constants, like Drees and Stărică (2002)

do. We shall come back to and further discuss this idea at the end of this section. For

the scale parameters τ+ and τ− the asymptotic confidence intervals as well as the bootstrap

confidence intervals are rather narrow. Indeed, they seem to coincide more ore less.

Figure 4.2 shows the estimated annualized volatilities σ̂a(t) :=
√

250σ̂(t), where the σ̂’s

are computed as the standard deviations of the estimated distributions. The corresponding

confidence intervals for the estimated volatilities result from the use of the Delta method.

The estimated annualized volatilities resemble very much the corresponding estimates from

Drees and Stărică, concerning both, the oscillation behaviour and the magnitude of the

estimates, as can be seen from the right image in Figure 4.2. Only the double-peak in the

middle of 1995 appears a bit strange, in particular, since the time series is very calm during
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that period. The occurence of such effects depends of course on the choice of the bandwidth:

they can be avoided by chosing a larger bandwidth, which on the other hand might lead to

an over-smoothing of some parts of the curve. To completely prevent such problems, the use

of a local, data-driven bandwidth (as proposed by Fan et al., 1998, Section 6) may be helpful,

which is however computationally very intensive and therefore not always recommended.

Assessment of the model. Summarizing so far, one can say that the local likelihood

estimators in our model, together with the normal tail approximation seem to yield rea-

sonable results for describing the development of the time series. Next we want to check

whether the model assumptions are really fulfilled. Of course, this also gives some answer

to the question of the goodness of our modelling approach. We have to check whether

• the (centered) returns are independent,

• the estimated distributions Gθ̂(t) are good approximations to the real distributions of

the returns, i.e. approximately we have Rt ∼ Gθ̂(t), and

• the estimated distributions Gθ̂(t) have approximately mean zero (i.e. the “centered”

returns Rt are really centered).

For this purpose we mainly use the same techniques as Drees and Stărică (2002). Further-

more, we check whether

• the asymptotic confidence intervals cover the true parameter with probability 0.95.

First we check whether the innovations or, equivalent, whether the centered returns

Rt are independent. This is one of the basic assumptions of our model. As the common

tests for independence always demand for a sample of identically distributed observations,

we first standardize the centered returns. Assuming the estimated distributions are good

approximations for the return distributions, i.e. we have approximately Rt ∼ Gθ̂(t), the

variables

(4.3) Vt := Φ−1
(
G(Rt; θ̂(t))

)
, t = 1, . . . , n,

—in the following referred to as standardized returns—should be standard normal, and thus

in case of independence of the returns should be Gaussian white noise. To check this, we

investigate the SACFs of the time series of standardized returns and of their absolute val-

ues; see Figure 4.3. For almost all lags both of the SACFs stay within the 95%-confidence

intervals, given by the dashed lines, thus strongly supporting the independence assumption.

In addition, Figure 4.3 shows the p-values of the Portmanteau tests for the corresponding

time series for the first 100 lags. While for the standardized returns the hypothesis of inde-

pendence is rejected for almost all lags at the 95%-level, the test supports the hypothesis of

uncorrelated absolute standardized returns for almost all lags. (For general information on

the confidence intervals or the Portmanteau test cf. Brockwell and Davis, 1987, Section 7.2

and p. 300ff., respectively.) This surprising effect occurs in a similar form also in the original

model of Drees and Stărică (2002). To find an explanation for this effect, we consider the

SACFs of the returns and the absolute returns of the S&P500, respectively, which are given

in Figure 4.4: the SACF of the absolute returns exhibits some long range dependencies (Fig-
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Figure 4.3. The SACFs (left) and the p-values of the Portmanteau tests (right) for the first

100 lags of the standardized returns {Vt : t = 1, . . . , n} (top) and for the absolute values of

the standardized returns {|Vt| : t = 1, . . . , n} (bottom). The dashed lines in the plots on the

left represent the 95%-confidence intervals under the hypothesis of independence.

ure 4.4, right), which, according to Drees and Stărică, might reflect certain non-stationarities

within the second moment structure of the time series. They argue that the locally station-

ary modelling approach describes these non-stationarities quite well. Consequently, the

absolute standardized returns behave nearly like uncorrelated random variables, as can be

seen by the evaluations of the corresponding SACF and the Portmanteau test (Figure 4.3,

bottom). However, this does not necessarily hold true for the standardized returns them-

selves. Actually, there also might be some non-stationarities (for instance in the mean of

the time series), which mainly manifest through the SACF of the returns, and which are

not taken into account by our modelling approach. Because the standardization (4.3) itself

only changes the absolute values of the returns, but not their signs, the SACFs of both,

the returns (Figure 4.4, left) and the standardized returns (Figure 4.3, top left) do not dif-

fer very much, and thus our modelling approach cannot capture these effects, which might

be a reason for the negative outcome of the corresponding Portmanteau test. Neglecting

this flaw, we conclude that the standardized returns (and thus the returns) can—at least

approximately—be regarded as independent, in accordance to our model assumptions.

Next we check whether the estimated distributions Gθ̂(t) are good approximations for

the true distributions of the centered returns. That is, we test for the null hypothesis

Rt ∼ Gθ̂(t), t = 1, . . . , n.

If this holds true, then the standardized returns should be approximately standard normal.

This is clearly supported by the QQ-plot for the standardized returns, which is given in

Figure 4.5. To formally test the normality of the standardized returns, we employ the
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Figure 4.4. The SACFs of the S&P500 returns (left) and of their absolute values (right)

for the first 100 and 250 lags, respectively.
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Figure 4.5. QQ-Plot of the standardized returns {Vt : t = 1, . . . , n}.

Kolmogorov-Smirnov (KS) test and the Jarque-Bera (JB) and Shapiro-Wilk (SW) tests. The

latter ones are specially designed for testing normality; cf. Shapiro and Wilk (1965), and

Judge et al. (1988), respectively. (The Matlab implementations used for the SW and JB tests

are part of the UCSD GARCH Toolbox, available at http://econ.ucsd.edu/∼ksheppar;

we corrected some errors in the codes.) The high p-values of all three tests, given in the

first line of Table 4.1, indicate that the estimated distributions approximate the true return

distributions very well.

Finally, we address to the question if the estimated distributions Gθ̂(t) (approximately)

have mean zero, as postulated by the model. If so, according to the central limit theorem,

the statistic

Sn :=

∑n
t=1 Rt

(
∑n

t=1 σ̂2(t))1/2

should be approximately standard normal. The p-value of the corresponding two-sided

test is roughly equal to 1, and thus we accept the estimated distributions Gθ̂(t) as being

Test Kolmogorov-Smirnov Jarque-Bera Shapiro-Wilk

p 0.897 0.336 0.265

pMC 0.794 0.824 0.756

Table 4.1. The p-values and Monte Carlo p-values for the KS, JB and SW tests for nor-

mality of the standardized returns.
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aproximately centered.

Our approach of evaluating the estimated model is not unproblematic, as it has two

major shortcomings: when testing for independence of the returns, we assume the estimated

distributions to be good approximations for the true return distributions. Whereas the

goodness of fit tests used for checking normality of the standardized returns presume the

returns to be independent. We adopt this approach, because (to the best of our knowledge)

there is no reasonable method for testing independence and the goodness of fit separately.

Consequently, the outcomes of the above evaluations should be interpreted carefully.

The second shortcoming of our approach concerns the p-values of the above goodness of

fit tests. What we did above, was computing the estimates θ̂(t) on the basis of the centered

returns and then applying the tests for normality on the standardized returns. These depend

on the estimates θ̂(t) and thus, again, on the centered returns (cf. (4.3)). So, actually, we use

the same data for estimating the model as we use for checking their goodness of fit. Hence,

the accuracy of the p-values seems questionable. Due to the high dependency on only one

single set of data, they may not be very accurate and there might be some need for adjusting

them. Therefor let us remind how the p-values are calculated for the case of the KS, JB and

SW tests: each of these tests is based on a test statistic, say T . It will reject the hypothesis

of standard normal Vt’s if the realization of T , denoted t, takes large values. The p-value is

then defined as p = P{T ≥ t}. Thus, we can redress the problem of an inaccurate p-value by

recalculating the law of T in consideration of the standardization (4.3). To this end, suppose

we are given J time series samples {R∗j
t : t = 1, . . . , n}, simulated according to (4.2). For

each of these simulated samples we compute the likelihood estimates {θ̂∗j(t) : t = 1, . . . , n}
and the resulting standardized returns, given by V ∗j

t = Φ−1
(
G(R∗j

t ; θ̂∗j(t))
)
. Consequently,

we have J + 1 realizations of T given by

t = T (V1, . . . , Vn) and t∗j = T (V ∗j
1 , . . . , V ∗j

n ).

Then, from the empirical cdf FJ(·) = J−1
∑J

j=1

� {t∗j ≤ ·} we get an approximation for

the law of T under the assumption that the distributions of the centered returns are really

given by the family {Gθ̂(t) : t = 1, . . . , n}. Consequently, for the p-value we have as an

approximation the Monte Carlo p-value pMC = 1 − FJ(t). For more general information on

this Monte Carlo testing approach cf. Davison and Hinkley (2003), especially Chapter 4. (Of

course, for the same reasons that we already mentioned in the discussion of the construction

of bootstrap confidence intervals, such a Monte Carlo p-value has to be considered carefully—

first of all it is a heuristic approach to assess the quality of the model fit.)

We do this computationally intensive method for the KS, JB and SW tests with J = 1000

simulated times series. The results are given in the second line of Table 4.1. All three pMC-

values assert the good results from the “simple” tests, the Monte Carlo version of the JB

and SW tests, surprisingly, having even a higher p-value than their simple versions.

Finally we want to check whether the approximate confidence intervals actually cover

the true parameter with probability 0.95. Suppose that at time t neither û+(t) nor û−(t)

equals 0 or 2/3, such that we can construct confidence intervals for the true parameters,

according to Section 3. Again, we consider the simulated time series {R∗j
t : t = 1, . . . , n}

and the resulting local likelihood estimates {θ̂∗j(t) : t = 1, . . . , n}, j = 1, . . . , J . Assume

that from the estimates θ̂∗j(t) (i.e. the parameter estimates for time t resulting from the jth
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Figure 4.6. Relative frequencies of the initial paramter estimates θ̂k(t), k = 1, . . . , 4, to lie

in the simulated confidence intervals. Points of time t, for which in the orignial estimates

no confidence intervals are constructed, are assigned the value zero.

simulation) we can compute approximate confidence intervals for each of the four parameters

θ̂1(t), . . . , θ̂4(t). These may be denoted by I
(
θ̂∗j

k (t)
)
, k = 1, . . . , 4. The number of all j’s for

which the construction of such confidence intervals is possible be denoted by Jt. Then the

relative frequencies #
{
j : θ̂k(t) ∈ I

(
θ̂∗j

k (t)
)}

/Jt give an estimate for the covering probability

of the approximate confidence intervals.

We compute these relative frequencies for all t with û+(t), û−(t) /∈ {0, 2/3}, using a total

of J = 1000 simulated time series. The results are depicted in Figure 4.6: for the parameters

u+, u−, τ+ and τ− the levels of the confidence intervals lie between 0.85 and 1.0 for almost

all points of time and thus do not differ too much from the 95%-level. However, there are

also some exceptions from this, e.g. shortly after the beginning of the year 2000, where the

estimated level for the confidence intervals of the parameter τ+ are very low (below 70%).

A simple explanation for this effect might be, that this is exactly the period during which

the estimated parameters τ̂+ are maximal, as can be seen in Figure 4.1. The estimates τ̂∗j
+ ,
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Test Kolmogorov-Smirnov Jarque-Bera Shapiro-Wilk

p 0.790 0.812 0.861

pMC 0.787 0.834 0.879

Table 4.2. The p-values and Monte Carlo p-values for the KS, JB and SW tests for nor-

mality of the standardized returns when u+ and u− are modelled as global constants.

which result from the simulated time series, in general take more moderate values, they

are smaller than τ̂+. Thus, the resulting simulated confidence intervals I
(
τ̂∗j
+

)
cover the

parameter τ̂+ less often. For the annualized volatilities there are major differences between

the relative frequencies and the presumed 95%-level of the confidence intervals. Especially

the very low level shortly before 1996 is striking. This is exactly the period where there is the

unexplainable double-peak of the volatilities (cf. Figure 4.1 and the comments thereon), and

thus should not be too surprising. Note that, although we have taken J = 1000, of course

the quantity Jt is less than that for all t, due to the fact that also during the simulations

the normal approximation for the tails is used. However, except for very few points of time,

we always have Jt ≥ 300.

The model with globally constant parameters u+ and u
−
. In our first discussion

of the estimates for the parameter functions u+ and u− (see p. 10), we pointed out that an

alternative approach might be to model these two parameters by global constants. We want

to briefly investigate how this simplified modelling approach behaves. To this end we take the

estimated scale parameters τ̂+ and τ̂− from the above local likelihood estimation and then we

first re-estimate u+ and u− as global constants, using a maximum likelihood (ML) estimator.

Based on these ML estimates, then the parameter functions τ+ and τ− are re-estimated with

local likelihood estimates, using again local linear fits. Considering the S&P500 data this

yields globally constant parameter estimates ûglob
+ = 0.209 and ûglob

− = 0.315, the newly

estimated parameter functions τ̂+ and τ̂− resemble very much the corresponding functions

from Figure 4.1, the plots are therefore omitted. The same model assessment procedures

that are used above can now be applied to the standardized returns resulting from these new

parameter estimates: the assessments of the SACFs and the Portmanteau tests look exactly

the same as those from Figures 4.3 and 4.5 (and are therefore omitted), thus indicating

that the parameter estimates describe the data quite well. This is further supported by

the p-values and the Monte Carlo p-values—based on J = 1000 simulated time series—of

the goodness of fit tests, which are given in Table 4.2. The p-values from the simplified

modelling approach even seem to slightly outperform the results from Table 4.1.

Of course, the above “mixed” modelling approach, where global constant fits for u+ and

u− and local linear fits for τ+ and τ− are used, comes with the drawback that nearly two

times as many parameter estimates are needed in order to fit the model. However, it has

the advantage that—if once fitted—the model can be updated more easily, because only

the scale parameters τ+ and τ− have to be updated regularly, which thus also saves on

computing time. This is in particular interesting for real-time observation of a time series.
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5 Forecasting with local likelihood methods

We now want to provide an approach for forecasting future return distributions, the basic

idea of which is the same as in Drees and Stărică (2002). Subsequently, we provide numerical

results for one-day-ahead distributional forecasts, and discuss them.

Distributional forecasts in the regression model. Assume we are given the data

available up to time t—which we interprete as the present—and we try to forecast the

distribution of the next d-day return Xt,d =
∑d

i=1 Xt+i. In our model this is given by

(5.1)





Xt,d = dµ +

d∑

s=1

Rt+s,

Rt+s ∼ Gθ(t+s), Rt+s independent, s = 1, . . . , d.

Thus, we have to find reasonable estimates for the future parameter values θ(t + s) that are

based only on the data available at time t. Presuming the forecasting horizon d is not too

large, an extrapolation of the Taylor polynomial in (3.1)—using the notation from Section 3,

especially the vector notation from (3.2)—yields

(5.2) θk(t + s) ≈
pk∑

j=0

θ
(j)
k (t)

j!
sj ≡

pk∑

j=0

βkj(t)s
j , s = 1, . . . , d, k = 1, . . . , 4.

The unknown coefficients βkj(t) can be estimated by local likelihood methods. Therefor we

employ a one-sided kernel, i.e. we use K(·) � {· ≤ 0} instead of K(·). Again, the estimations

are based on the centered returns, which in the forecasting context are given by R̃s = Xs−Xt,

s ≤ t, where Xt = 1/t
∑t

i=1 Xi. (Note that these centered returns have to be re-computed

for different values of t.) These two modifications assure that the resulting local likelihood

estimates β̂kj(t) only depend on the information available at time t. Plugging these initial

estimates into (5.2), we get forecasts for the future parameters by

(5.3) θ̂k,t(t + s) =

pk∑

j=0

β̂kj(t)s
j , s = 1, . . . , d, k = 1, . . . , 4.

Here and in the following the additional subscript t shall emphasize that the parameter

forecast is only based on the data up to time t. Instead of (5.3), one might also take

(5.4) θ̂k,t(t + s) = β̂k0(t), s = 1, . . . , d, k = 1, . . . , 4,

thus neglecting any trend components, which express through the components β̂kj(t), j > 0.

In the case of fitting each parameter by local constants, i.e. p1 = · · · = p4 = 0, then of course

(5.3) and (5.4) coincide. Replacing the unknown quantities µ and θ(t + s) in (5.1) by Xt

and θ̂t(t + s) (either given by (5.3) or by (5.4)), the law of

(5.5) X̃t,d = dXt +

d∑

s=1

R̃t+s, R̃t+s ∼ Gθ̂t(t+s),

provides a distributional forecast for Xt,d. In the following, the correspondig cdf’s of Xt,d

and X̃t,d are denoted Ft,d and F̃t,d, respectively.

The asymptotic results for the local likelihood estimates presented in Section 3 act on the

assumption of a symmetric kernel, and hence seem not suitable for our forecasting purpose.
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However, they can easily be carried over to our forecasting context. To this end, for each

fixed t we interpret t as the right boundary point of the interval [1, t] and we do the rescaling

proposed in (3.4) with n replaced by t. The bandwidth is rescaled in a similiar way, taking

h̃ = h ·n/t for the estimation of θ(t), with h fixed. The rescalation of the bandwidth ensures

that the number of observations used for the estimation does not change with varying t.

With this interpretation of t as right boundary point, it makes no difference if we use the

above one-sided kernel or its two-sided version, because there are no observations at times

larger than t that could have influence on the estimate. Consequently, the asymptotics,

which hold true for the right boundary point t when using a two-sided kernel, do so for

the use of the one-sided kernel as well. That is, the estimates β̂(t) are consistent and

asymptotically normal, which enables us to provide approximate confidence intervals for the

true parameters (as proposed in Section 3). Again, it is favourable to use local polynomials

of the same degree for all parameters, i.e. p1 = · · · = p4, in order to keep the expression

for the asymptotic bias to a minimum. For the fitting of the model it was also preferable

to chose odd degree local polynomials to ensure that the expression for the bias is of the

same order for boundary points and inner points. Since in this situation we always consider

the estimation of the parameter function in a boundary point, the question whether the

pi’s should be even or odd is of minor importance (cf. Aerts and Claeskens, 1997 for more

details).

We apply the above forecasting approach to the S&P500 daily returns, and we do one-

day-ahead distributional forecasts, i.e. we take d = 1. Two different computations are done,

each using a different degree of local polynomial fitting, namely:

(a) All four parameters are fitted by local constants, i.e. p1 = · · · = p4 = 0.

(b) Local linear fits are used for each of the four parameters, i.e. p1 = · · · = p4 = 1.

For each of the two fitting schemes (a) and (b) we implement the cross-validation method (cf.

Section 3), computing the corresponding cross-validation functions for bandwidths ranging

from 0.040 to 0.200. In case of fitting scheme (a) the resulting function is close to constant,

with a maximum at hCV ≈ 0.13, which is however not very distinct. For fitting scheme

(b) the corresponding cross-validation function is strictly increasing for all considered band-

widths. On the basis of these results it seems hard to choose an appropriate bandwidth, in

both cases the cross-validation method yields large bandwidths. Indeed, it is plausible that

for the prediction of future parameters a larger degree of smoothing is needed than for the

fitting of the model. However, in case of fitting scheme (b) this is somewhat critical: the

bigger we choose h the more restrictive becomes the second constraint in (4.1), and thus the

smaller in absolute value the estimates θ̂
(1)
k for the first derivatives of the parameter functions

have to be, which runs contrary to the idea of local linear fits for the parameter functions.

Therefore, in this situation it seems questionable if cross-validation is the best approach for

the choice of an appropriate bandwidth. Instead, we choose a smaller bandwidth for our

computations, taking h = 0.095, which is then rescaled for each t, as described above. This

bandwidth choice is essentially based on trial and error, doing parameter estimations with

different bandwidths.

We use the one-sided version of the Epanechnikov kernel. Otherwise, the same setting—

i.e. same parameter space, optimization procedure, etc.—as in the simple model fitting
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û+ û−

1992 1994 1996 1998 2000 2002
0

0.005

0.01

0.015

0.02

0.025

0.03

1992 1994 1996 1998 2000 2002
0

0.005

0.01

0.015

0.02

0.025

0.03

τ̂+ τ̂−

1992 1994 1996 1998 2000 2002
0

0.05

0.1

0.15

0.2

0.25

0.3

σ̂a

Figure 5.1. The estimated parameter functions û+, û−, τ̂+ and τ̂−, and the resulting

annualized volatilities σ̂a for the case of local constant fits (case (a)). The estimated functions

are depicted in solid lines, the corresponding approximate pointwise 95%-confidence intervals

(where applicable) are depicted in dotted lines.

approach is used (cf. Section 4). Due to the use of a one-sided kernel and the specific choice

of bandwidth we do not compute local likelihood estimates for t ≤ 300.

Numerical results for the forecasts. Figure 5.1 shows the local likelihood estimates

θ̂k,t(t) for t = 301, . . . , 3062, and the corresponding 95%-confidence intervals (where appli-

cable) for the case of local constant fits of all four parameters (case (a)). The estimated

functions, and thus the estimated distributions, seem to exhibit the same symmetric be-

haviour that was already discussed in Section 4. Furthermore, for almost all points of time,

the left tails—i.e. the tails modelling the losses—are heavier than the right tails, a desirable

property, as mentioned above. Despite the much larger bandwidth, the estimated functions

in Figure 5.1 exhibit greater fluctuations on a small time scale than the corresponding esti-

mates for the fitting of the model (Figure 4.1). This is due to the use of the one-sided kernel.
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We omit plots of the estimated parameter functions for case (b): in this case the estimated

functions look similar to those from Figure 4.1, however they are much more wiggly, and

the confidence intervals are wider.

For the prediction of the law of the one-day-ahead returns Xt,1 we consider three different

forecasting approaches. These differ with respect to the degrees of the local polynomials

that are used for the initial likelihood estimations (represented by one of the above cases

(a) and (b)), and with respect to the kind of extrapolation that is used for predicting future

distribution parameters (either (5.3) or (5.4)):

F1: The initial local likelihood estimates are computed with local constant fits for all

parameters. In this case (5.3) and (5.4) are the same.

F2: For the initial likelihood estimates local linear fits are used for all parameters, the

parameter forecasts are given by (5.3).

F3: Same as F2, but with parameter forecasts according to (5.4).

We now want to analyse the quality of the distributional forecasts provided by the random

variables X̃t,1. Essentially, the analysis is based on the same ideas and testing devices that

we used for the assessments of the quality of the model fitting in Section 4. Suppose for

a moment that the forecasting distributions L (X̃t,1) perfectly match the laws of the true

future returns L (Xt,1), i.e. for the corresponding cdf’s we have F̃t,1(x) = Ft,1(x) for all

x ∈ � . Then the variables

(5.6) Zt,1 := Φ−1
(
F̃t,1(Xt,1)

)
, t = 301, . . . , 3061,

—in the following referred to as standardized forecasts—should be i.i.d. standard normal.

To check whether this holds true, we have to test for both, independence and normality of

the standardized forecasts. We do so for each of the forecasting methods F1–F3.

In a first step to check for the normality of the standardized forecasts, we apply the

goodness of fit tests (KS, JB ans SW tests) to the time series {Zt,1 : t = 301, . . . , 3061}. The

corresponding p-values for each of the three forecasting approaches are given in Table 5.1.

Considering only the p-values resulting from the simple versions of the three goodness of

fit tests does not allow for an answer to the question whether the standardized forecasts

are (at least approximately) standard normal: as can be seen from the table, the KS test

supports the hypothesis of normality of the standardized forecasts for all three forecasting

approaches, whereas the JB and SW tests nearly always reject the hypothesis. This conflict

might be a consequence of the standardization (5.6) and its effects on the values of the

different test statistics (compare the discussion in Section 4), thus indicating the inadequacy

of these simple goodness of fit tests. For this reason, again, we consider Monte Carlo

tests. The basic idea is the same as described in Section 4: we simulate J time series

{R̃∗j
t : t = 301, . . . , 3062}, with independently simulated random variables R̃∗j

t ∼ Gθ̂t(t)
.

Based on these simulated time series we re-compute the initial local likelihood estimates

{β̂∗j(t) : t = 601, . . . , 3062}, and we compute the corresponding forecasting parameters

θ̂∗j
t (t + 1) and the simulated standardized forecasts {Z∗j

t,1 : t = 601, . . . , 3061}. Repeating

these operations for j = 1, . . . , J , and computing the KS, JB and SW test statistics for

these simulated standardized forecasts, finally yields approximate Monte Carlo p-values.
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Forecasting method Test Kolmogorov-Smirnov Jarque-Bera Shapiro-Wilk

p 0.969 0.003 0.054
F1

pMC 0.902 0.656 0.750

p 0.235 0.000 0.000
F2

pMC 0.906 0.703 0.744

p 0.244 0.000 0.000
F3

pMC 0.902 0.701 0.741

Table 5.1. The p-values and Monte Carlo p-values for the KS, JB and SW tests for the

standardized forecasts resulting from the three forecasting methods F1–F3. The Monte Carlo

p-values are based on 1000 simulated time series.
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Figure 5.2. QQ-plots for the standardized forecasts {Zt,1 : t = 301, . . . , 3061} resulting

from the forecasting approaches F1 (left) and F3 (right).

We do these Monte Carlo tests for each of the forecasting approaches F1–F3, where each

of the computed pMC-values is based on J = 1000 simulated time series. The results are

given in Table 5.1, too. Without exception, the tests strongly support the hypothesis of

normality of the standardized forecasts, and thus the idea of a good forecasting. Apparently,

there are only small differences in the pMC-values for Methods F2 and F3. Thus, for the

quality of one-day-ahead parameter forecasts it seems not of great importance whether these

incorporate a trend component or not. This is due to the fact that in our special case the

values of the forecasting parameters θ̂k,t(t + 1) only vary at an order of magnitude of 10−3,

depending on whether they are computed according to (5.3) or (5.4). Consequently, for the

one-day-ahead distributional forecasts it has nearly no effects which of these two methods

is used for the computation of θ̂k,t(t + 1). For the same reason one can anticipate that the

forecasting results will not improve significantly by chosing higher order polynomial fits, and

therefore—for one-day-ahead forecasts—the use of local constant fits seems favourable since

it is computationally least intensive.

Next we consider the QQ-plots of the standardized forecasts. For the cases F1 and F3

these are depicted in Figure 5.2. (The QQ-plot for the standardized forecasts based on fore-

casting method F2 looks very similar to that of F3, so we omit it.) As can be seen from the

figure, the data roughly fit the main diagonal, thus underpinning the normality hypothesis

for the standardized forecasts. Solely in the tails there seem to be some deviations, especially

when considering the standardized forecasts resulting from method F3 (Figure 5.2, right).
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Figure 5.3. The SACFs of the standardized forecasts {Zt,1 : t = 301, . . . , 3061} (left) and

of the absolute values {|Zt,1| : t = 301, . . . , 3061} (right), each for the first 100 lags. The

standardized forecasts are based on the forecasting approach F1. The dashed lines represent

the 95%-confidence intervals.

Altogether, taking into account both the QQ-plots and the results of the Monte Carlo

goodness of fit tests, the data seem not to directly contradict the hypothesis of normal-

ity of the standardized forecasts—regardless of which forecasting approach F1, F2 or F3

is considered. Thus, at least approximately the standardized forecasts can be considered

normal. This supports the assumption that the distributional one-day-ahead forecasts F̃t,1

are reasonable approximations for the true distributions Ft,1.

It remains to investigate the dependence structure of the standardized forecasts. To

this end, we consider the SACFs of the time series {Zt,1} and {|Zt,1|}. For the forecasting

approach F1 these are depicted examplarily in Figure 5.3. The corresponding SACFs for the

standardized forecasts based on the other forecasting approaches look very similar to the

ones showed in Figure 5.3 and thus are omitted. Under the assumption of independence of

the standardized forecasts, the absolute values of both SACFs should be very small for all

lags. The SACF of the standardized forecasts {Zt,1} clearly exhibits such a behaviour and

thus might be evidence for the independence assumption to be true. However, the SACF

of the time series {|Zt,1|} clearly seems to differ from that. For about the first 30 lags the

SACF exceeds the upper 95%-confidence bound. In addition, the Portmanteau tests for

both, the standardized forecasts as well as for their absolute values, reject the hypothesis

of independence for almost all lags. The corresponding p-value plots look exactly the same

as the top right image in Figure 4.3, and thus are omitted. (The statements just made

also hold true for the other forecasting approaches F2 and F3.) Thus, the hypothesis of the

standardized forecasts to be independent seems a bit questionable.

Forecasting over longer horizons. Of course the forecasting approach that we used

above can also be used for larger forecasting horizons, say d = 20 or d = 40. Drees and

Stărică (2002) do such examinations. However, with a larger forecasting horizon there

occur several difficulties: one major problem is that the distributions of the forecasting

variables X̃t,d cannot be described in a closed form. Hence, simulations are needed to find

good approximations for the convolution given in (5.5). Furthermore, the variables Xt,d

are not independent. Even in case of the returns being independent—which is a somewhat

critical assumption, as we have seen in the above examinations—the forecasting variables
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form a (d − 1)-dependent sequence of random variables. And the same holds true for the

corresponding standardized d-day forecasts Zt,d = Φ−1
(
F̃t,d(Xt,d)

)
. Hence, the basis for an

application of the goodness of fit tests is clearly violated. (Remember that this was already

critical for the one-day-ahead forecasts!) On the other hand Monte Carlo tests, like we did

them above, are computationally way too expensive, because of the additional simulations

needed for computing the distributions of the variables Xt,d. Hence, an assessment of the

forecasts becomes a difficult task. For these reasons we only consider one-day-ahead forecasts

in this paper.

6 Concluding remarks

Based on a work of Drees and Stărică (2002), we considered a simple regression type model

for stock returns. The innovations were modelled by four parameter asymmetric distribu-

tions, and the parameters were modelled as smooth, deterministic functions of time. In

addition, we considered an appropriate normal approximation for the tails, enabling the

model to adapt to both, heavy-tailed as well as light-tailed return distributions. By the

example of the S&P500 daily returns, observed over a period of twelve years, the principle

of local likelihood estimation (in connection with local linear fits) prove to be a reasonable

method for fitting our model to real-life data. In addition, approximate confidence inter-

vals for the true parameters could be given. The assessment of the model via the (Monte

Carlo) KS, JB and SW tests argued for a good fitting of our estimated model to the given

data. Solely the assumption of independence of the innovations seemed somewhat critical:

although the investigation of the SACFs of the (standardized) returns and their absolute val-

ues supported the hypothesis of independent innovations, the outcome of the Portmanteau

tests partly spoke against that. We also considered a simple device for forecasting future re-

turn distributions, and we did one-day-ahead distributional forecasts, using local likelihood

estimators with several forecasting approaches. Actually, an evaluation of these estimates

pointed out some minor flaws, concerning the independence assumption of the returns and

the results of the simple versions of the goodness of fit tests. However, the results of the

Monte Carlo tests as well as the QQ-plots for the standardized forecasts clearly argued for

our modelling approach to yield reasonable distributional forecasts.

Summarizing, one can say that our simple modelling approach, in connection with the

local likelihood estimators, seems to succeed in describing financial time series and giving

reasonable one-day-ahead forecasts. The results clearly underpin the adequacy of the idea

of a local modelling approach.
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