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BLACK-SCHOLES THEORY FOR AN UNDERLYING WITH

MULTIPLE ATTRACTORS

FREDERIK HERZBERG

Abstract. A valuation theory for derivatives on an underlying that is subject
to multiple attractors is proposed, the economic justi�cation being attraction-
adjusted hedging. In non-critical regions � outside the boundaries of the at-
tractor regions � a European option price can be viewed as a derivative on
an underlying with a mean-reverting law, such as a commodity price, however
with a di�erent payo� function.

1. Introduction
In recent years, numerous authors in the macroeconomic theory of �nancial mar-

kets have been studying multiple attractor regimes for both traded and non-traded
assets, with a particular emphasis on currencies, aiming at rigorous economic expla-
nations for currency crises. Starting as early as 1986, Obstfeld introduced the �rst
model to explain currency crises [17], followed by the seminal work of Morris and
Shin [16] which then prompted many other researchers to propose so-called �sec-
ond generation models�, most notably Jeanne and Masson [12] (see also the survey
article by Jeanne [11]), and also sparked some more empirical research such as the
work by Sarno and Taylor [20]. More recently still, after �xed (pegged) exchange
rate regimes seemed to be the focus of research in that area, Jeanne and Rose [10]
shifted the attention back to traded assets and �oating exchange rate regimes. At
the heart of the aforementioned �second generation� investigations lies the relation
between multiple � �sunspot�, as opposed to economically justi�ed, � equilibria and
self-replicating � or contagious, as it is often referred to � behaviour.

On a di�erent front of research and in a very di�erent methodological manner,
motivated by stochastic physical systems, stochastic models for herd behaviour and
self-ful�lling prophecies have been developed, e.g. by Corcos et al. [6].

Furthermore, empirical research on the joint evolution of stock and futures prices,
as well as on the joint evolution of spot and forward exchange rates, has been
conducted by Sarno and Valente [19], as well as by Clarida, Sarno, Taylor and
Valente [5], respectively. These papers propose regime-switching vector equilibrium
models.

The problem of how to economically explain price formation for derivatives on
traded assets with multiple equilibrium prices, however, has received little attention
so far.

In this paper, we will therefore develop a Black-Scholes type theory for European
derivatives with an underlying whose price process has multiple attractors which
attract at linear speed: Based on a hedging argument, we will derive a partial

2000 Mathematics Subject Classi�cation. 91B24, 91B28.
Journal of Economic Literature Classi�cation. E44, G13.
Key words and phrases. Multiple equilibria, hedging under constraints, European contingent

claim pricing.
Short running title. Black-Scholes for multiple equilibria.
The author would like to thank two anonymous referees for valuable comments on a previous

version of this paper.
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di�erential equation for a European option price and solve it probabilistically, the
solution being the conditional expectation of the discounted payo� function.

Finally, we shall explain why under the assumptions of our model, the derivative
price coincides locally with the price for a derivative on an underlying whose price
process has a mean-reverting drift, for instance when much of the market price is
actually determined by the fundamental economic factors of supply and demand.
This, of course, is a model assumption that was formulated for the �rst time in
the theory of commodity derivatives by Fischer Black [3], and later generalised by
Miltersen and Schwartz [15] to even incorporate a given term structure of interest
rates in the spririt of Heath, Jarrow and Morton [7, 8] as well as convenience yields.

2. Description of the model
Consider the simplest non-trivial market model, in which there is only one asset

A, and the bond B, yielding interest at rate r > 0.
Let ε > 0, and let the stochastic process x(ε) =

(
x

(ε)
t

)
t
denote the logarithmic

price process of an asset A that is subject to a multiple attractor regime, the
attraction occurring at linear (in the log-price) speed whenever an ε-ball (wherein
ε > 0 shall be conceived of as the reaction threshold) around the current logarithmic
price is inside some attractor region, and the di�erence between the log-price process
and this attraction term is assumed to follow a Black-Scholes model with risk-less
rate r, i.e. is just Brownian motion with constant volatility σ > 0 and drift r− σ2

2 .
For the following, we shall drop the superscript ε where no ambiguity can arise.

In addition, we also assume that, given some derivative D on the underlying
asset A, any previsible and self-�nancing portfolio process (in the sense of, e.g.,
Karatzas [13]) in A, D and the bond, must grow at the weighted mean of the
risk-less rate r (for the bond and derivative parts) and the attraction-induced rate
r −∑N

j=1 χ
(ε)
Aj

(xt) · νj (mj − xt). (In case ν1, . . . , νn = 0, we simply get the usual
Black-Scholes model.)

Put formally, this is to say that in our simpli�ed market model we assume the
following (existence of multiple linearly attracting equilibria):

There are
• a natural number N > 1 (the number of attractors),
• N di�erent attractors (or equilibrium levels) m1, . . . , mN ∈ R, enumerated

in increasing order,
• attractor regions A1, . . . , AN (pairwise disjoint, �nite or in�nite, left-open

intervals ⊂ R, by assumption on ~m also increasing), and
• attraction intensities ν1, . . . , νN > 0,

such that

∀j ∈ {1, . . . , N} mj ∈ Aj ,(1)
N⋃

i=1

Ai = R,(2)

∀t > 0 dxt =
(

r − σ2

2

)
dt +

N∑

j=1

χ
(ε)
Aj

(xt) · νj (mj − xt) dt + σ dbt,(3)

(wherein b is the � normalised � Wiener process) and furthermore � assuming ε > 0
to be su�ciently small � the functions χ

(ε)
Aj

, j ∈ {1, . . . , M}, are Lipsschitz and
2
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coincide with χAj

outside an ε-nehighbourhood of the boundary of Aj , e.g.

χ
(ε)
Aj

: x 7→
(

x− ai−1

ε

)
χ(ai−1,ai−1+ε](x) + χ(ai−1+ε,ai−ε](x)

+
(

ai − x

ε

)
χ(ai−ε,ai](x)

for 1 < i < M and Ai = (ai−1, ai], as well as

χ
(ε)
AM

: x 7→
(

x− aM−1

ε

)
χ(aM−1,aM−1+ε](x) + χ(aM−1+ε,+∞)(x)

and
χ

(ε)
A1

: x 7→ χ(−∞,a1−ε](x) +
(

a1 − x

ε

)
χ(a1−ε,a1](x).

Any trader who is aware of the multiplicity of equilibria will have to adjust her
portfolio accordingly. Since there is no previsible portfolio that would eliminate all
stochasticity (such as a perfect ∆-hedge), we cannot hope to �nd an objective, as it
were, risk-neutral hedge. Thus, any self-�nancing previsible portfolio πt will grow
at a stochastic rate dπt for any t ≥ 0.

Nevertheless, one can ask how a representative agent who knows about the mul-
tiplicity of the equilibria would valuate a previsible self-�nancing portfolio which
contains αt shares of the asset A at time t. A representative agent will expect the
portfolio to grow essentially at the risk-neutral rate, except that the attraction term
in (3) must be taken into account (and weighted with the number of shares αt of
asset A):

In order to see this, note that by Itô's formula,

∀t > 0 d (ext) =rext dt + ext

N∑

j=1

χ
(ε)
Aj

(xt) · νj (mj − xt) dt + extσ dbt,

whence we obtain as the mean growth rate of ext the value

d

du

∣∣∣∣
u=t

E [exu | Ft] =


r +

N∑

j=1

χ
(ε)
Aj

(xt) · νj (mj − xt)


 ext ,

whereas if x had been the logarithmic price process of the Black-Scholes model, this
value would, of course, have been d

du

∣∣
u=t

E [exu | Ft] = rext .
Hence, in expectation, the assets in the portfolio do not grow at the

risk-neutral rate rext dt for a given time t > 0, but at the rate of(
r +

∑N
j=1 χ

(ε)
Aj

(xt) · νj (mj − xt)
)

ext dt. Therefore, the portfolio growth in our
model equals the portfolio growth in the Black-Scholes model (viz. at the risk-
neutral rate rπt dt) plus ext

∑N
j=1 χ

(ε)
Aj

(xt) · νj (mj − xt) dt for each unit of asset
A in the portfolio.

Since by assumption there are αt shares of asset A in the portfolio, we get the
following stochastic di�erential equation for the portfolio value:

∀t > 0 dπt =r · (αte
xt + βt + δtv (xt, t)) dt

+ αte
xt

N∑

j=1

χ
(ε)
Aj

(xt) · νj (mj − xt) dt

=rπt dt + αte
xt

N∑

j=1

χ
(ε)
Aj

(xt) · νj (mj − xt) dt.

3
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This motivates the following De�nition:

De�nition 2.1. Consider a portfolio (αt, βt, δt)t consisting of αt units of asset A,
βt units of the bond B and δt contracts of the derivative D with maturity T > 0
(whose value at time t is assumed to only depend on xt and shall be denoted by
v (xt, t)), and assume that the portfolio (αt, βt, δt)t is previsible and self-�nancing.
The portfolio will be called an attraction-adjusted hedging portfolio for the deriv-
ative D (for short, attraction-adjusted) if and only if its value πt at time t will
satisfy the stochastic di�erential equation

∀t > 0 dπt =r · (αte
xt + βt + δtv (xt, t)) dt(4)

+ αte
xt

N∑

j=1

χ
(ε)
Aj

(xt) · νj (mj − xt) dt.

3. Consistency of the model
In order to vindicate the �rst assumption (most notably (3)) mathematically,

let us remark that any initial value problem based on the stochastic di�erential
equation (3) (that is the problem of solving (3) subject to the condition that x0 = ξ0

P-a.s. for some real number ξ0) has, according to well-known results (cf e.g. Arnold
[1] or Revuz and Yor [18]) a unique solution, since χ

(ε)
A1

, . . . , χ
(ε)
AM

and thereby all
the coe�cients of (3) are Lipschitz.

Remark 3.1. By Girsanov's Theorem, there is for all x ∈ R (start log-price)
a probability measure Qx, equivalent to Px, under which (xt)t � after adding a
linear drift at rate r − σ2

2 � is just Brownian motion with volatility σ, hence(
exp

(
xt −

(
r − σ2

2

)
t
))

t
becomes a martingale under Qx for all x ∈ R. There-

fore, again referring to Karatzas [13], we may conclude that there is no arbitrage
in this market model.

4. Attraction-adjusted European derivative prices
Consider an investor that has issued a derivative contract of type D (whose value

at any time t and current underlying log-price x·, as stipulated previously, shall be
denoted v(x, t) for any time t and current underlying log-price x).

In order to ∆-hedge his position, the investor will set up a portfolio whose
value, conceived of as a stochastic process (πt)t, satis�es the stochastic di�erential
equation

∀t > 0 dπt =− dv (ext , t) + (∂1v (ext , t)) d (ext) .(5)

Now, to some extent analogously to the derivation and solution of the classical
Black-Scholes partial di�erential equation [4], we may prove the following formula
for a European derivative:

Theorem 4.1. Under the assumptions of Section 2, there is a unique function
v : R>0 × [0, T ] → R, such that the portfolio of value π·, i.e. the ∆-hedge for D,
becomes attraction-adjusted in the sense of De�nition 2.1. If we choose g such that
v (·, T ) = g (ln(·)), then v is given by the formula

∀x ∈ R∀t ∈ [0, T ] v (ex, t) = Ex
[
e−r(T−t)g (xT−t)

]
,(6)

4
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and the function u : (x, t) 7→ v (ext , t) solves the terminal value problem

σ2

2
∆u + ∂2u + r∂1u +




N∑

j=1

χ
(ε)
Aj

((·)1) · νj (mj − (·)1)

 ∂1u− ru = 0(7)

on R× (0, T ),

u(·, T ) = g on R.

Furthermore, any derivative without dividends will solve the above partial di�eren-
tial equation.

The proof will be given in an Appendix.
The characterisation of the fair derivative price � �fair� in the sense of covering

the cost for the hedge � as an expected discounted payo� has � apart from its
theoretical appeal � some practically relevant consequences, for instance put-call
parities. Furthermore, the partial di�erential equation in the Theorem can be used
to show that any attraction-adjusted European derivative price coincides locally
with the price for some commodity derivative price with a suitable payo� function:
Remark 4.1. Inside (ai + ε, ai+1 − ε)×(0, T ), for all i < M , the partial di�erential
equation obeyed by u is exactly the same that ū(i) : (x, t) 7→ Ex

[
e−r(T−t)g

(
y
(i)
T−t

)]
,

wherein y
(i)
· is an Ornstein-Uhlenbeck (that is, mean-reverting) process of reverting

speed νi and mean mi, would follow:

σ2

2
∆u(i) + ∂2u

(i) + r∂1u
(i) +

(
∂1u

(i)
)

χ
(ε)
Ai

((·)1) · νi (mi − (·)1)− ru(i) = 0(8)
on (ai + ε, ai+1 − ε)× (0, T ),

which (due to χ
(ε)
Ai

= 1 on (ai + ε, ai+1 − ε)) is the same as

σ2

2
∆u(i) + ∂2u

(i) + r∂1u
(i) +

(
∂1u

(i)
)
· νi (mi − (·)1)− ru(i) = 0(9)

on (ai + ε, ai+1 − ε)× (0, T ).

Therefore, on each of the regions (ai + ε, ai+1 − ε) × (0, T ), u will solve the
same partial di�erential equation as the price for a derivative whose underlying is
modelled by a logarithmic Ornstein-Uhlenbeck process1 with mean-reversion speed
νi and mean mi.

A commodity derivative (with suitable payo� function to �t the Dirichlet bound-
ary data of u(i)) may serve as an example for such a derivative whose logarithmic
underlying price follows an Ornstein-Uhlenbeck process: Commodity prices are often
modelled as having a mean-reverting law (cf Black [3] and more recently Miltersen
and Schwartz [15]).

It might be possible to obtain results on the values of American derivatives in
this setting as well:
Remark 4.2. Since Theorem 4.1 contains a Black-Scholes type partial di�erential
equation (7) for arbitrary derivatives � however, for simplicity, we did not allow

1Recall that an Ornstein-Uhlenbeck process with mean-reversion speed νi and mean mi is the
solution y· to the stochastic di�erential equation

dyt =

ţ
r − σ2

2

ű
dt + νi (mi − yt) dt + σ dbt(10)

for all t > 0.
5
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for dividend yields � , any American-European di�erence will also solve the par-
tial di�erential equation (7). Hence, in order to approximate the di�erence between
American and European prices. Now, mimicking the technique of MacMillan [14]
and of Barone-Adesi and Whaley [2] (as summarised e.g. by Hull [9]), one can
introduce appropriate changes of variables and drop a �small� term, to obtain an
analytically more tractable partial di�erential equation. This may, possibly after fur-
ther approximations, lead to an analytic approximation of the American-European
di�erence in a multiple-attractor regime.

5. Conclusion
Even under the assumption of multiple equilibrium prices � conceived of as mul-

tiple attractors � for an underlying asset, much of the classical Black-Scholes the-
ory can be saved. However, rather than being risk-eliminating as in the Black-
Scholes world, the appropriate hedging in a multiple equilibrium setting can only
be attraction-adjusted.

For the special case of a portfolio consisting only of underlying stock and one
derivative contract, the attraction-adjusted hedging strategy gives rise to a partial
di�erential equation for the �fair price� (in the sense of covering the cost of the
hedge) of the derivative. Solving the corresponding terminal value problem for
a European option probabilistically, a valuation formula can be deduced. The
option price then is simply the expected discounted payo� under the attraction-
adjusted probability measure � the risk-neutral measure cannot be taken, due to
the multiplicity of attractors that entail pro-cyclic behaviour.

Finally, the European option price thus obtained can be viewed as the price for
some commodity derivative (commodities being assumed to have a mean-reverting
law) with a suitable payo� function, as locally the former and the latter derivative
prices obey the same partial di�erential equation.

Appendix A. Proof of the Theorem
Proof of Theorem 4.1. First, we use Itô's formula to prove

∀t > 0 d (ext) =rext dt + ext

N∑

j=1

χ
(ε)
Aj

(xt) · νj (mj − xt) dt + extσ dbt(11)

and also

∀t > 0 dv (ext , t)(12)

=(∂1v (ext , t)) · ext


r dt +

N∑

j=1

χ
(ε)
Aj

(xt) · νj (mj − xt) dt + σ dbt




+ ∂2v (ext , t) dt +
σ2

2
e2xt∆v (ext , t)

(where, of course, ∆ = ∂1∂1)
This implies that the portfolio of value π· set up by the derivative-issuer to ∆-

hedge his position is indeed previsible and therefore, since it is also self-�nancing
(any gain or loss made on the derivative will be compensated by a loss or gain in the
asset, respectively), our second assumption in the guise of (4) may be employed.

Hence, we already get
6
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∀t > 0 r (−v (ext , t) + (∂1v (ext , t)) ext) dt(13)

+ (∂1v (ext , t)) · ext

N∑

j=1

χ
(ε)
Aj

(xt) · νj (mj − xt) dt

=dπt

=− dv (ext , t) + (∂1v (ext , t)) d (ext) .

Inserting (11) and (12) into (13) yields

∀t > 0 r (−v (ext , t) + (∂1v (ext , t)) ext)(14)

+ (∂1v (ext , t)) · ext

N∑

j=1

χ
(ε)
Aj

(xt) · νj (mj − xt) dt

=− ∂2v (ext , t) dt− σ2

2
e2xt∆v (ext , t) .

If we now choose the abbreviation u : (x, t) 7→ v (ext , t), we obtain from identity
(14) via

∀t > 0 ∂2u (xt, t) +
σ2

2
∆u (xt, t)− ru (xt, t) + r∂1u (xt, t)(15)

+ (∂1u (xt, t)) ·
N∑

j=1

χ
(ε)
Aj

(xt) · νj (mj − xt)

=0

and due to the recurrence of x the following partial di�erential equation for u:

σ2

2
∆u + ∂2u + r∂1u + (∂1u)

N∑

j=1

χ
(ε)
Aj

((·)1) · νj (mj − (·)1)− ru = 0(16)

on R× (0, T )

for any T > 0. Now suppose we already know the value of the derivative D at
time T as a function of xT (this is to say that D is European). Then u is completely
determined on R× [0, T ] as the unique solution to the terminal value problem

σ2

2
∆u + ∂2u + r∂1u + (∂1u)

N∑

j=1

χ
(ε)
Aj

((·)1) · νj (mj − (·)1)− ru = 0(17)

on R× (0, T ),

u(·, T ) = g on R.

One can even write down an explicit formula for u by solving this terminal value
problem (17) probabilistically: For, using the abbreviation

L :=
σ2

2
∆ + ∂2 +


r +

N∑

j=1

χ
(ε)
Aj

((·)1) · νj (mj − (·)1)

 ∂1,

well-known results from stochastic analysis tell us that L is the in�nitesimal gen-
erator of the Markov di�usion x·, and that ∂2 + L is the in�nitesimal generator of
the space-time process (xt, t)t∈[0,T ] (cf e.g. Revuz and Yor [18, Chapters VII, IX]).
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nly
Therefore ũ : (x, t) 7→ Ex

[
e−r(T−t)g (xT−t)

]
must satisfy the di�erential equation

Lu − r∂2u = 0 on R × [0, T ]. By de�nition of ũ, we also have that ũ(·, T ) = g(·)
on R. Hence, ũ solves the terminal value problem (17), which can only be true if
u = ũ.

Thus,
∀x ∈ R∀t ∈ [0, T ] u(x, t) = Ex

[
e−r(T−t)g (xT−t)

]
.

¤
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