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ABSTRACT

Tacit Collusion in Repeated Auctions”

by Andreas Blume and Paul Heidhues

We study facit collusion in repeated auctions in which bidders can only observe past
winners and not their bids. We adopt a stringent interpretation of tacit collusion as
collusion without communication about strategies that we model as a symmetry
restriction on repeated game strategies: Strategies cannot discriminate among initially
nameless bidders until they have become named through winning an auction. We obtain
three classes of results: (1) Completely refraining from using names, i.e. strengthening
the symmetry constraint, rules out collusion altogether, and even if naming is permitted,
as per our definition of tacit collusion, the lack of communication limits collusive
strategies and payoffs among impatient bidders. (2) If communication is allowed, there
are sustained improvements over bid rotation and competitive bidding among patient
bidders. (3) These gains extend to tacit collusion among patient bidders. However,
whether tacit or not, collusion need not be efficient.
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ZUSAMMENFASSUNG

Stillschweigende Kollusion in wiederholten Auktionen

Der Beitrag untersucht die Mdglichkeiten von ,tacit collusion® (stillschweigender
Kollusion) in wiederholten Auktionsspielen in welchen nur die vergangenen Gewinner
nicht aber deren Gebote bekannt sind. Dabei wird ,,tacit collusion® als kollusives
Verhalten ohne Absprachen zwischen den Bietern interpretiert. In dem Artikel werden
insbesondere auch vor dem Spiel getroffene Absprachen iiber Strategien
ausgeschlossen. Das Fehlen solcher Absprachen wird durch Symmetrierestriktionen
modelliert: Strategien konnen solange nicht zwischen anfangs ,,namenlosen* Bietern
unterscheiden, bis diese sich durch das Gewinnen einer Auktion von den anderen
Bietern differenzieren. Es werden drei Arten von Ergebnissen hergeleitet: (1) Stirkt
man die Symmetrierestriktionen und verlangt symmetrisches Verhalten in jeder Periode,
so kann keine Kollusion auftretten. Aber auch weniger starke Symmetrierestriktionen,
die prinzipiell eine endogene Rollenverteilung ermoglichen, schrinken die moglichen
Kollusionsgewinne bei ungeduldigen Bietern ein. (2) Erlaubt man vor dem Spiel
getroffene Absprachen iiber die Strategiewahl, so konnen hinreichend geduldige Bieter
unbegrenzt hohere Gewinne erhalten als die Gewinnne bei wiederholtem
Konkurrenzverhalten oder bei einer einfachen Bieterrotation. (3) Dies gilt auch fiir
Kollusion ohne Absprachen falls die Bieter hinreichend geduldig sind. Jedoch, ob mit
oder ohne a-priori Absprachen, effiziente Kollusion kann selbst bei extrem geduldigen
Bietern unmdoglich sein.
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1 Introduction

Despite an extensive literature on “tacit collusion” in economics, there is considerable ambi-
guity about the use of the term. Often, as e.g. in Tirole [1988], it is identified with collusion
“in a purely noncooperative manner,” thus allowing for explicit coordination on how to in-
teract in the game and making a large variety of behaviors supported by repeated interaction
eligible. Others, such as Carlton and Perloff [1999], emphasize the absence of explicit com-
munication as defining tacit collusion. The latter definition is in line with legal practice in
the US, where any explicit communication between competitors coordinating behavior in
the market place is considered illegal.! In the absence of explicit communication on how to
play the game, competitors face considerable strategic uncertainty. With reference to the
FCC auctions, this leads Cramton [1997] to state that: “Fortunately, tacit collusion is easily
upset. It requires that all the bidders reach an implicit agreement about who should get what.
With thirty diverse bidders unable to communicate about strategy except through their bids,
forming such unanimous agreement is difficult at best.” Yet, in the standard noncooperative
analysis of tacit collusion such strategic uncertainty plays no role. In practice, players can
only overcome the strategic uncertainty by observing each others behavior in the auction
(respectively market place).

But how should one model bidders’ inability to communicate outside of the trading mech-
anism itself? This question is particularly interesting in the auction setting because, unlike
in repeated oligopoly models, there are no simple symmetric rules to sustain cooperation like
a trigger strategy where all firms charge the monopoly price until a deviation is observed in
which event all firms revert to competitive pricing for a specified number of periods. Instead,
as emphasized in the above quote by Cramton, an important question is “who should get
what?” One can easily imagine that the inability to communicate makes it harder to ascribe
role differences to different players and hence makes it harder to answer this question. Yet,
despite the intuitive plausibility, we are not aware of any paper that formally addresses these
important issues.

To model the strategic uncertainty created by the lack of communication outside of the

1See Ayres [1987] who writes that “[lJegal scholars have traditionally distinguished between explicit and
tacit collusion. The law punishes the former, so that the act of communication is of central importance. For
economists, however, this distinction has no meaning.”



institution itself, we use symmetry constraints. Suppose, for example, bidders would like to
use a bid-rotation scheme and that such a bid rotation can be supported by a noncooperative
equilibrium. In such an equilibrium, one bidder is designated to win in the first period. In
the absence of communication between bidders, this raises the question how this bidder is
selected. In a symmetric auction environment there is nothing to single out a particular
bidder as the natural winner. In other words, bidders face strategic uncertainty, which
requires that all bidders use symmetric bidding behavior in the first period. On the other
hand, bidders can acquire different roles over time through the repeated interaction in the
auction itself.

For the most part, we focus on attainable strategies. Underlying the concept of attainable
strategies is the idea that only when a player’s observed past behavior differentiates him from
his rivals, beliefs and future actions can be tied to this behavior. Intuitively, one can think
of the player as obtaining a name that allows him to play a different role then his rivals
in the future. So after the first period, if the winner is observed, he can be required to
play a different role in the continuation equilibrium from all of his rivals. If the observable
histories of his rivals are identical, however, they are required to use symmetric strategies
in the continuation game. Similarly, if another player wins, he obtains a name and can be
treated differently in the future. In this equilibrium concept, the history of the game allows
bidders to construct substitutes for natural language in the interest of collusion.

We address the issue of communication and strategic uncertainty in a simple infinitely
repeated auction setting (including first-price, second-price, and all-pay auctions) in which
players’ values are drawn independently every period and only the winner is announced.?
In this setting, we investigate the constraints placed by attainability on collusive equilib-
rium strategies and payoffs. We examine both improvements over bid rotation and over
competitive bidding.?

We proceed in three steps. First, we show that naming is essential. For example, strate-
gies that never rely on names do not improve on competitive bidding in standard auctions.

Second, ignoring the attainability constraint for the moment, we construct a collusive equi-

2This auction enviroment was recently analyzed in Skrzypacz and Hopenhayn [1999]. See Section 6 on
how our work relates to theirs.

3Bid rotation is a natural reference point because McAfee and McMillan [1992] show that in the static case
without side payments, bid rotation is the optimal form of collusion under weak distributional assumptions.



librium with the property that the difference between the payoff of this collusive equilibrium
and the payoff from bid rotation (or competitive bidding) has no upper bound if players can
be made sufficiently patient. Third, we construct an attainable equilibrium that relies on
three phases: a naming phase, a reward phase, and a collusive phase. The naming phase
serves to remove the attainability restrictions, the reward phase helps to provide appropriate
incentives for the naming phase, and the collusive phase implements the collusive equilib-
rium constructed in the second step. This equilibrium payoff dominates bid rotation (and
competitive bidding) as well because the length of naming and reward phases is bounded,
whereas the payoff difference during the collusive phase is not.

Our main result is that as the discount factor approaches one, the inability to communi-
cate about strategies does not restrict the average payoff that players can obtain and hence
does not restrict their ability to collude. We also prove that for sufficiently patient bidders
bid rotation is never the optimal form of tacit collusion in any standard auction and that
players can obtain a higher payoff than in the best static equilibrium in first- and second-price
sealed-bid auctions.

In establishing our findings, we considerably strengthen existing results on noncooperative
equilibria in repeated auctions. Among other things, we prove a novel anti-folk theorem: In
any perfect public equilibrium of the repeated second-price sealed-bid auction with more
than two bidders, the average per-period payoffs are bounded away from the full collusive
gain.

The rest of the paper is organized as follows. In Section 2, we introduce the basic
model and formalize language constraints such as attainability. In Section 3, we show that
restrictions on the use of bidders’ names constrain payoffs from collusion. In Section 4, we
construct equilibria with unbounded gains over bid rotation and competitive bidding. We
then use these results in Section 5 to construct attainable equilibria that beat competitive

bidding and bid rotation. In Section 6, we discuss the related literature. Section 7 concludes.

2 Setup and Language Constraints

In this section, we describe the auction environment, discuss the solution concept, and

formally define attainability.



There are N > 2 bidders participating in an infinite sequence of auctions for separate
objects. The valuation of bidder i for an object in period ¢ is denoted by v;(¢). We assume
that these valuations are drawn independently across players and time, from a fixed distri-
bution with c.d.f. F(-). Let F' have a density function f(v) that is strictly positive over the
interval [v!,v"] with v! < " and v" > 0. All players are risk neutral and have common
discount factor §. We assume that players have access to a public randomizing device. This
structure and the auction rules are common knowledge.

Following Skrzypacz and Hopenhayn [1999], henceforth SH, we restrict attention to stan-

dard auctions defined as follows:

Definition 1 A standard auction is any set of auction rules that satisfy the following con-

ditions:

~

. A buyer can make any nonnegative bid.

2. The buyer who submits the highest bid is awarded the good.

3. The expected payment from a zero bid is zero.

4. Auction rules are anonymous, so that each player is treated symmetrically.

5. There exists a unique common equilibrium bidding strategy, b¢(v), which is strictly

increasing in v for v > 0 and with zero expected payoff for a buyer with value zero.

Throughout, we will consider the case of v' = 0; the more general formulation was only
needed to extend properties of standard auctions to environments with induced valuations
that are translates of the original valuations. Such translations will play an important role
because they arise naturally when adding continuation payoffs in the repeated game to
current valuations.

Examples of standard auctions are first-price auctions, second-price auctions, and the

all-pay auction.* For future reference, note that incentive compatibility implies that in equi-

4The class of auctions also includes the third-price auction, which was used in Kagel and Levine, and
higher-price auctions if there exists a sufficient number of bidders. It also includes auctions in which the
highest bidder obtains the good and pays a price equal to the weighted average between the first and the
second highest bid, which were analyzed in Plum [1992].



librium a bidder’s expected payment is nondecreasing in his own bid and that the maximum
expected payment is bounded by the highest possible value.

At time t buyers know their own valuation of the good currently being sold but not of
the goods that are being sold in the future or the valuations of other buyers. It is common
knowledge that participation in the auction is limited to N players. We assume that the
winner of the object is publicly observable but not the winning bid.

Let H(t) denote the history of the game up to, but not including, time ¢. This history
contains information about the bids of the players, the realizations of the public random-
ization device, and the history of the winners in all auctions up to time ¢. Denote by h(t)
the public history of the game up to time ¢, that is the identities of the winners and the
realizations of the public randomization device in the corresponding auctions.’

We study Perfect Public Equilibria (PPE), as defined in Fudenberg, Levine and Maskin
[1994]. In a PPE, players’ strategies only depend on the publicly available history, and
strategies form an equilibrium after every history. Deviations to nonpublic strategies are
permitted but irrelevant. As long as the other players use public strategies, private history
can be ignored when evaluating future payoffs. PPEa are recursive and therefore dynamic
programming techniques apply: The one-deviation principle holds, i.e. one can verify that a
particular strategy profile is a PPE by checking that no player can gain after any history by
deviating from his prescribed strategy once and conforming with it forever after.

Any PPE can be made into a Perfect Bayesian Equilibrium (PBE) by choosing any beliefs
that conform with Bayes’ rule. Since behavior depends only on public history, these beliefs
do not matter for evaluating future payoffs. PPEa satisfy one of the two conditions for a
sequential equilibrium, sequential rationality. Since those beliefs that are not tied down by
Bayes’ rule are arbitrary, the other condition, consistency, is immaterial. Thus, we may
think of PPEa as sequential equilibria.

If bidders are unable to communicate, they may find it more difficult to overcome strategic

uncertainty. While we still lack a good formal representation of strategic uncertainty, we

5Strictly speaking, the public history should be defined as the largest set of common knowledge events.
In some special standard auction environments this is larger than h(t). For example, in the second-price
sealed-bid auction with two bidders, the second price is common knowledge. For our positive results, which
establish the existence of desirable PPE, restricting the public history is without loss of generality. Note also
that when proving our anti-folk theorem for second-price sealed-bid auctions, we consider the case of more
than three bidders in which case h(t) is the largest set of common knowledge events.



can at least investigate some necessary restrictions on equilibria (provided we retain an
equilibrium perspective). We use symmetry to capture some of the implied restrictions.
In particular, we believe that ex ante-identical bidders must have identical beliefs. Then,
adopting the perspective that a player’s strategy is an expression of the beliefs of the other
players about his behavior (see for example Aumann and Brandenburger [1995]), identical
bidders must use identical strategies.

An advantage of this approach is that we can study to what extent inability to di-
rectly communicate hinders collusion. We note that symmetry restrictions can be weakened
through repeated interaction and one can think of a variety of different symmetry conditions,
reflecting some structure that may for example have arisen out of prior interaction among
the bidders.

Our central symmetry condition on strategy profiles is attainability. A strategy profile is
attainable if at any point in time it respects the remaining symmetries in the game; e.g., if all
bidders are initially symmetric, they all have to use the same first-period bid function. They
may use different bid functions in later periods to the extent that they are distinguished by
the history of wins.

This condition can be formalized as follows: Denote the bid function of player ¢ in period
t by b;(vi(t), h(t),0), where o denotes a strategy profile. Let ¢ : N — N be a permutation
of players (i.e. a one-to-one function on the set of players). Recall that the public history
h(t) is a sequence containing the identities of all winners and the realizations of the public
randomization device up to date ¢, that is h(t) = {i,,r,}._} (we can create a fictitious 0-
player for those instances where nobody wins). The permutation ¢ acts in the obvious way

on the history h(t), i.e. we can define (with slight abuse of notation) ¢(h(t)) := {#(i,), 7 }:2b.
Definition 2 A strategy profile is attainable if
bi(v, h,0) = by (v, ¢(h),0), Vi,Vé and Vh.

Under an attainable strategy, a player who won the object in a given period may be
perceived and treated differently from other players thereafter. Intuitively, through winning
the player obtains a name, and beliefs and actions can be tied to that name.

To emphasize the role of such names, we will sometimes consider even more stringent

restrictions on the reliance on player identities. We will consider strategies that never depend



on names. Such name-free strategies can only depend on the binary sequence of wins and “no
wins” and not on the associated names of winners. Let p: N U {0} — {0,1} be a function
that maps 0 into 0 and all elements of N into 1 and define p(h(t)) in the obvious way. When
applied to a history h, this function eliminates all the information on the identity of winners,

while retaining the information on whether there was a win at all in a given period.

Definition 3 A strategy profile is name free if
bi(v, h,o) = byuy (v, p(h),0), Vi and Vh.

Both attainable and name-free strategies are “symmetric” in the sense of not depending
on an a prior: assignment of names. They differ in that attainable strategies permit elabo-
rate naming schemes whereas name-free strategies permit no naming at all. Inbetween are
strategies that permit naming but rule out elaborate naming schemes. We are particularly
interested in strategies that make only minimal use of names. Name-simple strategies only
recall the name of the last winner; they do not vary with permutations of other previous
winners. Let ¢; denote a permutation that fixes (the name of) bidder i, and i(h) the last

winner in history h.

Definition 4 A strategy profile is name simple if it is attainable and
bi(va ha 0) = bi(va ¢1(h)(h)7 0)7 VZ, V¢ and Vh.

Finally, it is worth mentioning that attainability can be modulated to account for nu-
merous preexisting structures on the set of bidders. Let G’ be any set of permutations of the
set of bidders N; in particular, G can be a strict subset of the set of all permutations of V.

Then we can define a version of attainability that respects only the symmetries embedded

in G.°
Definition 5 A strategy profile is G-attainable if

bi(v, h, &) = by (v, 6(h), o), Vi,¥é € G and Vh.

6Blume [2000] argues that for such a set to be common knowledge among the players, it has to form a
group.



For a simple example where G-attainability would be appropriate, consider three firms
who repeatedly bid on a sequence of public contracts and who may wish to arrange a bid
rotation. If they could talk to each other, ignoring incentive issues, they could easily agree
on who the first contract should be awarded to. Without communication they can try to rely
on what they know about each other and what they learn through the course of a repeated
interaction. Denoting the three firms by generic labels x, #, and &, suppose it is commonly
known among them that their order by market share (from largest to smallest) is , #, &,
the order by profitability is #, &, *, and the order by number of employees is &, *, #. Each
of these orders could be used as a focal point to generate a bid-rotation.

Considering the first period, the firms suffer from an embarrassment of riches: with three
possible orderings it may not be obvious which one to use. Thus, initially, all firms may be
forced to behave identically. However, the common knowledge of the set of three orderings,
while useless initially, proves useful in the second round. If, for example, the first contract
is awarded to firm #, then all three orderings suggest that the next contract be awarded to

firm & (and similarly if one of the other two firms is awarded the first contract).”

3 Language Constraints in Standard Auctions

In this section, we give examples in which language constraints limit optimal collusion.
Evidently, language constraints rule out certain types of collusive behaviors. For example,
bid rotation schemes that start at the beginning of the game are not attainable. More
importantly, sufficiently strong language constraints may rule out otherwise feasible collusive
equilibrium payoffs.

We begin by looking at name-free equilibria in repeated standard auctions. In other set-
tings name-freeness need not rule out efficient payoffs; e.g. trigger strategies in the infinitely
repeated Prisoners’ Dilemma are name-free. In the present setting however, name-freeness
entirely rules out collusion in repeated standard auctions.

In the following, we say that a player bids competitively in period t if the bid function

"More formally, the three orderings can be identified with a set of three permutations which together
form a cyclic subgroup G of the group of all permutations of a set of three elements. The fact that all firms
are named once a single firm is named is reflected in the stabilizer of each generic label being the group
identity.



he uses in period ¢ is identical to the unique symmetric equilibrium bid function of the one-
shot auction. For any public history h, use (h,w) to denote the history h followed by a
win and (h,n) the history h followed by no win. Let ¢(h) be the time period immediately
following history h. For any history h and name-free strategy o, let V'(h; o) be the (common)
continuation payoff from o after history h. If o prescribes behavior other than competitive

bidding after history h, we call h a noncompetitive history.

Lemma 1 In any infinitely repeated standard auction, there exists no mame-free perfect

public equilibrium with higher expected payoffs than from repeated competitive bidding.

Proof: Note that contingent on bidder 7 submitting a bid, the bid b; does not affect the
public history if strategies are name-free. The only incentives of bidder ¢ that possibly involve
variations in continuation values are between bidding and not bidding. Clearly, if a bidder
with value v prefers to bid, any bidder with value v' > v will also bid. Thus, for any history
h there will be a critical current period valuation n(h) > 0 in period ¢(h) below which no
one will bid and above which everyone will bid.

If the history h is noncompetitive with critical type n(h), then the repeated-game payoff
to a bidder with value v from not bidding in period ¢(h) is

0+ 8((F((h)¥ 'V ((h,n);0) + (1 = (F(n(h)* )V ((h, w); 0)),

whereas the payoff from submitting a zero bid equals

v(F(n(h)" "+ 0V ((h, w); 0).

Hence, any n(h) € (0,v") satisfies
n(h) = 6(V((h,n);0) = V((h,w);0)).

Thus if n(h) € (0,v") then it is equal to the discounted differences in the continuation values.
Since a bidder with value v > n(h) does not alter history by varying his bid b, he chooses
b to maximize payoffs in the one-shot game where bidders with value less than n(h) do not

submit a bid. By assumption, for any n(h) there exists a unique symmetric bid function

9



b(v, h, o), which is strictly monotone increasing for all v > n(h). Since the highest bidder is
awarded the good, incentive compatibility requires that the expected current period payoff
for a bidder with value v is equal to
B EN ) + [ FY @)t
n(h)
Note that

BN () + [

FN=Y(t)dt — /U FN=Yt)dt < n(h), ¥ n(h) > 0.

n(h) 0

Therefore, conditional on n(h) > 0, the current period gain in ¢(h) over competitive bidding
is less than the discounted difference in continuation values from no one winning versus
someone winning. Let period ¢ be the first period in which the strategy ¢ does not prescribe
competitive bidding on the equilibrium path (i.e. in which n(h) > 0). Replace strategy o
by a strategy o' that prescribes competitive bidding in period # and that has continuation
value V ((h(f),n); o) independent of the prior history. The new strategy has strictly higher
expected payoff. In the same manner, every noncompetitive period can be replaced by a
period of competitive bidding, each time strictly increasing expected payoffs. Evidently, the
payoffs from the strategies generated from these successive improvements converge to the
payoffs from repeated competitive bidding. O

Indeed, name-freeness completely determines the bidders’ equilibrium behavior in every

period.

Proposition 1 In any infinitely repeated standard auction, there is a unique name-free per-

fect public equilibrium. In this equilibrium, bidders bid competitively after every history.

Proof: We observed earlier that after any history h there exists a critical value n(h) below
which players refrain from submitting a bid and above which all players bid. If n(h) = 0
for all h then players use the competitive bid function b°(v) after any history and thus
Proposition 1 holds.

Suppose n(h') > 0 after some history hA’. Then we claim that there exists a profitable
deviation for bidder 7. Consider the following bid function b(v, h,o): bid b(v, h, o) for any

10



v € [n(h),v"] and 0 for all [0,7(h)). In any period in which n(h) = 0 the payoff of this bid
function is identical to the payoff of competitive bidding. In any period in which n(h) > 0
the expected contemporaneous payoff from B(v,h, o) must be greater than the expected
contemporaneous payoff from b(v, h, o).

Thus after history A’ there exist a strategy according to which bidder i bids b(v, h, o)
after history h and that guarantees bidder ¢ higher payoffs than the payoffs from competitive
bidding. This, however, contradicts Lemma 1.

O

Thus, for the bidders to obtain any collusive gain in a repeated standard auction, different
players must have different roles. That is the continuation equilibria must depend on which
player wins the object in a given period. Naming in this sense is essential.

We next show, by example, that in finitely repeated auctions attainability does restrict
the players ability to collude. Consider sealed-bid second-price auctions with independent
private values. The next result shows that in a large class of distributions the symmetric

competitive equilibria are payoff-dominated by the asymmetric bid rotation equilibria.®

Proposition 2 Consider the one-shot second-price sealed-bid auction. Suppose that

/Ovh F(v)dv < (1 _ (%) N_1> o,

Then the payoff in the (asymmetric) bid rotation equilibrium, wpg, is strictly greater than

the payoff in the (symmetric) competitive equilibrium, Tcp.

Note that for any N > 2 this condition is satisfied for the uniform distribution and for
any distribution that first-order stochastically dominates the uniform distribution. Notice
also that this condition will be satisfied for large N provided

h

/Ov F(v)dv < <1 - é) o™,

8While true for a large class of distributions, the result does not hold for all distributions. Competitive
bidding may be more attractive than bid rotation if the probability of high payoffs is small. Consider the case
of two bidders whose valuations have a distribution F that assumes the value 1 — e except on small intervals.
One checks easily that if these intervals are small enough, then the expected payoff from competitive bidding
exceeds the payoff from bid rotation as long as 1 — e > %

11



Proof: The payoff to a bidder in the symmetric equilibrium is

mon= [ [vF o [ = 0RO 2 0] Fw)d.

Integrating by parts,

ol

Tow = /O P (0N () — [ /0 CHN = 1)F(5)V 2 f(t)th(v)]

0

+/0v v(N = 1)F(0)N 2 f(v)F(v)dv.

:/0” UNF(U)le(v)dv—/O” o(N = D) F(0)N "2 (0)dv

Integrating by parts again, we get

Ton = /O [P - F)Y] do.

It is easily verified that the integrand is maximized where F'(v) = % Therefore,

<5 H)
TCE N N V.

1 "
TBR = N/o vf(v)dv

h 1 ot

1 v
=~ [WF(v)], — ~ /s F(v)dv

On the other hand,

1, 1 p
=5V~ N/o F(v)dv.
Thus,
<¥> o o <ot — /Ovh F(v)dv = mcp < TBg-

O

Given this result, in order to show that attainability is a binding constraint in the one-shot

game, it suffices to show that the competitive equilibrium is the only symmetric equilibrium

in the one-shot game. This, and more, follows from the complete characterization of the set

of Nash equilibria in second-price sealed-bid auctions in Blume and Heidhues [2001].

convenience, the result for the case of at least three bidders is stated below:

12
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Proposition 3 Consider the second-price sealed-bid auction with independent private values
and N > 3 bidders. Suppose the distributions F;, i = 1,..., N, of valuations have positive
densities f; on the common support [0,v"]. A strategy profile is a Nash equilibrium if it

satisfies: There is a b such that
1. any bidder with value v > b bids her value,

2. ifl; < v" then there is a single bidder who bids at b whenever her value v satisfies v < I;,

and sz > v then there is a single bidder who bids at or above b for any value v,
3. all other bidders bid 0 whenever their value v is in [0,D).

Conversely, every equilibrium satisfies these conditions up to changes of the bid functions on

a set of measure zero of buyers’ valuations.

One implication of this result is that the competitive equilibrium is the unique symmetric
equilibrium in the one-shot game. In conjunction with Proposition 2, this implies that there
is a nontrivial set of distributions for which attainability constrains the payoffs that are
available in equilibrium in the one-shot game.

The second implication of this result is that attainability is a constraint in intertemporal
settings, regardless of the discount factor. To see this, consider the two-period second-price
auction with three or more bidders. The reason is that only winners get named. Therefore
in the second period all the non-winning bidders must employ symmetric strategies. If
the winning bidder is singled out in the second period, than she must be the one with a
mass point at some b e (0,v"). One easily checks that irrespective of the the choice of b
the single asymmetric bidder has higher payoff than in the symmetric equilibrium, and the
symmetric bidders have lower payoffs than in the symmetric equilibrium. Thus, the only
possible consequence from winning is to be rewarded in the second period. But this would
raise initial bids to exactly the point where the possible gains from second-period collusion
would be eliminated.

The third implication is that with a sufficiently low discount factor, attainability is a
constraint on payoffs from collusion in the infinitely repeated second-price auction. With a

small discount factor, first period bidding can only slightly deviate from competitive bidding.

13



Then Proposition 2 implies that there is a first-period loss relative to bid rotation and if the
discount factor is small enough this shortfall can never be recovered in the remainder of the

game.

4 Collusion with Prior Communication

In this section, we study collusion when players are not subject to attainability constraints.
Intuitively, one may interpret this as allowing the players to meet and agree on a strategy-
profile before the beginning of the game. Our reason for revisiting this problem, which has
already been addressed by SH in the same environment, is threefold. First, we show that in
an infinitely repeated standard auction there exists a sequence of equilibria with expected
gains over bid rotation that grow without bound as § — 1. Second, we show that a similar
result holds for the first-price and the all-pay auction vis-a-vis competitive bidding. Third,
we show a similar result vis-a-vis any collusive (or asymmetric) equilibrium of the one-shot
second-price auction. These results will be used in the next section to show that for high
enough discount factors one can construct attainable equilibria with higher expected payoffs
than from bid rotation, competitive bidding, or repeated play of the best static equilibrium.

We begin with a preliminary result, constructing a class of bid functions for standard
auctions that improve on bid rotation. Let b¢(v, ¢) be a competitive equilibrium bid function
for the environment in which each player’s value is decreased by the fixed amount ¢ and the
action rules require each player to submit a bid. Note that the maximum expected payment
in equilibrium is bounded by v" — ¢. Now consider all players using the strategy b°(v,c) in

the original game with unmodified payoffs. Define v¢ := f(}’h vf(v)dv.

Lemma 2 If all bidders use the strategy b(v, c), then here exists a value of ¢ such that the
expected payoff for each bidder exceeds the expected payoff from bid rotation.

Proof: For b°(v, c), the expected payoff to a representative bidder is bounded from below
by

9(e) = %F (C)NW + FON P! — R [[R):) - g{c()?]})dv
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+H1 = F(o)" (e — "),

since any bidder’s expected payment is bounded from above by v" —c. Observe that g(v") =

h

%. We are left to show that a small decrease in ¢ below v" increases g(c).

dg(e) N-—-1

29 = PO [Cof @)+ PO e (O

h

F(N — 1)F(e)V2 / [0 — o + | f (v)dv — F(&)N[2¢ — o"]f(c)

RN / Fw)do — (N = 1)F(e)V"2(c — o) + [1 — F(e)¥1].

Hence,

— f(vh){ (v - vh)} <0,
O
Lemma 2 states that there exists a bid function of the form b¢(v, ¢) for which the expected
value is higher than the expected value of a priori randomly choosing a winner who gets the
object for free.
Next, we show that there exist some ¢ such that for all 6 > ¢ there exists a perfect public

equilibrium in which players gain over and above bid rotation.

Lemma 3 For any infinitely repeated standard auction, there exist a >0, K > 1, 6 € (0,1)
such that for all 6 > § there exists a perfect public equilibrium with each bidder’s expected
payoff at least as large as the expected bid rotation payoff in every period and larger than the

expected bid rotation payoff plus a at least once every K periods.

Proof: Suppose that competitive bidding yields a higher payoff than bid rotation. Then
Lemma 3 is trivially true. Thus, assume that the payoff of bid rotation is greater than
or equal to the payoff of competitive bidding. Let b(v,c) be a bid function that - if used
by all players - yields a higher payoff than randomly assigning the good for free in the
one-period problem. We construct an equilibrium in which along the equilibrium path play
alternates between exclusionary and non-exclusionary phases. In any non-exclusionary phase
one bidder, say 7, bids according to b¢(v, ¢); the other players bid according to the function

b¢(v, ¢) for all v > ¢ and do not submit a bid for all v < ¢. In any exclusionary phase, the
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winner from the last non-exclusionary phase is excluded and the remaining bidder engage in

bid rotation. Let the pair (a(c,d), K(c,d)) be a solution to
K—1

c={> & +s"a}

=1

U@
N-1

for a € [0,1). A player who wins the object in a non-exclusionary period is excluded for the
following K — 1 periods with certainty and is excluded in the Kth period with probability
a. If no player wins the object in a non-exclusionary period, then the player 7 is excluded.
If the excluded player wins the object in a exclusionary phase, players revert to competitive
bidding ever after. Since the above strategies alternate between phases in which their payoff
is higher than under bid rotation and phases in which they play bid rotation, they lead to a
payoff which is higher than the expected payoff from bid rotation.

To see that these strategies form perfect public equilibria, first, observe that in the
exclusionary phase no player other than the chosen bidder has an incentive to bid, since
submitting a bid can only increase his current period payoffs if he wins the object. In this
case, however, he forgoes all future benefits of collusion, which for high enough ¢§ are greater
than the one-period gain from deviating. Second, observe that the continuation payoff of
any player who wins in a non-exclusionary phase are ¢ below the continuation payoff of not
winning the object. Thus, bidding b¢(v,c) for all v > ¢ is a best response for any player
since b¢(v, ¢) is an equilibrium bid function in the one shot problem in which players’ values
are reduced by c. For any player j # 4, it is optimal not to submit a bid for values below ¢
because in this case the current period gains in case of winning is less than the reduction in
his continuation payoff. For player 7, however, it is optimal to bid 0 since his continuation
payoff is not affected by whether he submits a bid or not. A zero bid ensures that he gets
the current period gains if no other player submits a bid (if some other player submits a bid
he is indifferent between not bidding and submitting a zero bid). O

We are now ready to show that there always exist collusive equilibria in which the players’
expected payoffs are not only greater than the payoffs of bid rotation (which was shown in
SH) but that there exists a sequence of equilibria with expected gains over bid-rotation
that grow without bound as 6 — 1. This result is surprising since McAfee and McMillan
[1992] show that in a static model without side-payments bid rotation is the optimal form

of collusion for a large class of distributions. McAfee and McMillan’s result does not hold
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in our dynamic model, because bidders can condition their future bidding behavior on the
history of wins and thereby establish implicit side-payment scheme via choosing between
different continuation equilibria. Intuitively, bid-rotation is extreme because it minimizes
bidding competition at the cost of completely ignoring allocative efficiency. In a bid rotation
scheme a player cannot win the object even if he has exceptionally high value for the good
- unless it happens to be his turn to win anyhow. The bid-rotation scheme is always beaten
by a collusive scheme in which players act as in a bid-rotation scheme, but are allowed to bid
in case they have exceptionally high values for the object being sold. The collusive scheme is
made incentive compatible by excluding a player who won when it wasn’t his turn from the
bid rotation for a number of periods (if an excluded player wins all bidders simply revert to
competitive bidding). If the range of high values for which bidders may bid is small enough,
the collusive scheme leads to an increase in allocative efficiency without leading to significant

price increases.

Proposition 4 In any infinitely repeated standard auction, there exists a sequence of perfect
public equilibria such that as 0 — 1, the difference in expected payoffs between these equilibria

and bid rotation grows without bound.

Proof: Consider the equilibria whose existence is asserted in Lemma 3. The difference D
in the expected payoff of any such equilibrium and a bid rotation equilibrium satisfies:
00
D> Z 0 Eq
=1
Hence, in the limit as 6 — 1, D — oc. O
If bid-rotation leads to higher payoffs than competitive bidding, the above result implies
that for any standard auction there exists a sequence of collusive equilibria in which the
players’ expected gain over competitive bidding grows without bound. We will now show
that there always exists a sequence of collusive equilibria in which the players’ expected
gain over competitive bidding grows without bound in first-price and all-pay auctions. For
second-price auctions the same result can be proven, using, very simple, attainable strategies;

we postpone that discussion until the next section, which focuses on attainability.
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To show that the players’ expected gain over competitive bidding grows without bound
in first-price and all-pay auctions, we construct equilibria in which play alternates between a
non-exclusionary regime and an exclusionary regime on the equilibrium path. The winner in
a non-exclusionary regime faces the risk of being excluded in the next period. This lowers the
winning bidders continuation value, leads thereby to less aggressive bidding behavior, and
hence to lower contemporaneous prices. This also, however, induces both a contemporaneous
allocative inefficiency and a future allocative inefficiency. The contemporaneous allocative
inefficiency arises because bidders have no incentive to bid positively for low values. To ensure
that the contemporaneous allocative inefficiency is sufficiently low, we designate a default
bidder who is also excluded if no one wins the object; this ensures that he always bids zero,
gets the object for free if all bidders happen to have low values, and thereby bounds the
contemporaneous inefficiency. The future allocative inefficiency can not be avoided, because
the winning bidders needs to be treated differently in the future, even though his value is
drawn from the same distribution. In an exclusionary period of the equilibrium we construct,
all but one excluded bidder bid competitively; since competitive bidding with less bidders
yields higher expected payoffs, non-excluded bidders receive an implicit side-payment from
the last period’s winner. We show that for high enough discount factors, the benefit of
our collusive scheme through the expected reduction in the contemporaneous price always
overcompensates the two types of efficiency loses in the first- and in the all-pay auction. In
particular, we show that for these auctions there exists a sequence of collusive equilibria in

which the players’ expected gain over competitive bidding grows without bound.

Lemma 4 In any first-price auction in which values are reduced by ¢, 0 < ¢ < vy, there
erists a symmetric equilibrium. For positive net payoffs, v — ¢ > 0, the equilibrium bid

function has the form
Je FN7H(t)at

b (v,¢) = (v—rc) — V1)

The proof relies on standard arguments and is therefore omitted. For any first-price
sealed bid auction define ¢.(c) := min,>{0°(v,0) —b°(v, ¢)}. ¢¢(c) is the minimum reduction

in equilibrium bids for bidders with value in the range [¢, v] if their values are reduced by c.

Lemma 5 In any first-price sealed-bid auction ¢.(0) = 1,Ve > 0.
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€ N-—1
Proof: From Lemma 4, ¢.(c) = ¢ — LAT(SW. Hence,

be(c) =1— <1;8>N_1

We are now ready to establish the following:

Proposition 5 In any infinitely repeated first-price or all-pay sealed-bid auction, there exists
a sequence of perfect public equilibria such that as 6 — 1, the difference in expected payoffs

between these equilibria and repeated competitive bidding grows without bound.

Proof: Consider the first-price sealed-bid auction. We construct an equilibrium that relies
on three regimes: during a non-exclusionary regime for some ¢ > 0, bidders with value
v > ¢ bid b¢(v, ¢) and bidders with value v < ¢ do not bid except for a default bidder who
submits a zero bid for v < ¢; during an exclusionary regime all but one bidder bid according
to b5 _,(+,0), the symmetric equilibrium bid function for N — 1 bidders, and the excluded
bidder does not bid; and in a punishment regime everyone bids b¢(v, 0).

Let wy denote a bidder’s expected one-period payoff from participating in competitive
bidding with N bidders. Define

c

afc, ) = ST

In the following we will only consider values of ¢ for which a(c,d) € [0,1).

The game starts in the non-exclusionary regime. One bidder is randomly chosen to be
the default player. If the game is in the non-exclusionary regime in period ¢, it switches to
the exclusionary regime with probability (e, d). In the exclusionary regime the last period’s
winner is excluded; if no player won the object last period’s default player is excluded. With
probability 1 — a(c, ) the game remains in the non-exclusionary regime and a new default
player is chosen. From the exclusionary regime the game returns with probability one to the
non-exclusionary regime unless the excluded player wins the object. In the latter case the

game permanently reverts to the punishment regime.
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For e > ¢ > 0, the difference D between the sum of players’ expected payoffs from the

above strategy and from repeated competitive bidding satisfies:

D > F(o)"(=c) +[1 = F(e)"]¢e(c)
+ 6(1 - ale,8))D + 6a(c, ){(N — Dwy_1 — Nwy} + 6*alc,d)D .

Therefore,

D(1—6(1 — a(c,8)) — 8*alc,d))
> (=c)F()N '+ (1 = F(e)M)¢e(c) + (e, 0){(N — D)wy_, — Nwy}.

Since for ¢ = 0, the right-hand side of the above expression equals zero, the sign of the
right-hand side for small positive ¢ equals the sign of its derivative with respect to c evaluated
at ¢ = 0. This derivative equals

(N —1)wn_1 — Nwy

WN-1

>0

(1= F(e))gc(0) +

for sufficiently small € > 0.

Therefore, there exist ¢ > 0 and € > ¢ such that

D> (—c)F(e)N 1 + (1 — F(e)M)oe(c) + da(e,0){(N — )wy_; — Nwy}

N (1—6(1—ale,d)) — 82a(c,6)) > 0.

Thus, using the definition of «a(c, )

oo COFOY 4 (1= FOY)gele) + IR
= (1= 0(1 — a(c,0)) — 6%a(c,0)) -

Hence, fixing ¢ and ¢, as 6 — 1, D — oo.

To show that our strategy is an equilibrium strategy, it suffices to check that no bidder
has a profitable one-shot deviation after any history. After any history in which the strategy
prescribes competitive bidding forever after, the incentives are identical to the incentives
in the one-shot game. Thus, bidding b¢(v,0) is a best reply. After any history that places
bidders in a non-exclusionary regime, it is a best response for all bidders with values below
¢, except the default player, not to bid because their instantaneous payoff from winning v

is less than the reduction in their continuation payoff, a(c,d)éwy_; = c. For the default
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player it is a best response to bid zero if v < ¢ because conditional on winning the object
at price zero his continuation payoff is independent of bidding or not. The zero bid thus
ensures that he gets the current period’s gain. For all bidders with value v > ¢, it is a
best response to bid b(v, ¢) because v — ¢ is the net-benefit of winning the object. During
an exclusionary regime, it is a best response for all non-excluded players to bid b%_, (v, 0)
because in equilibrium their continuation values are not affected by their bids. For the
excluded player it is a best response not to submit a bid if v < 5%. For any ¢ such that
D > 0, choose ¢ such that for all § > §, v" < § %. Hence, the excluded player has no incentive
to deviate.

We are left to show the proposition for the case of the all-pay auction. The proof for this
case is similar to the first-price auction case and is therefore relegated to Lemma 9 in the
Appendix. O

Sometimes in standard auctions (first-price auction, 2-bidder all-pay auction, 2-bidder
Plum’s A-auction) it is known that there exists a unique equilibrium in the one-shot game.?
In Proposition 3 we showed, however, that this is not true in the second-price sealed-bid
auction. In this auction there exists a continuum of collusive equilibria in the one-shot
game; furthermore there exist distributions F' for which the best static equilibrium requires
bidders neither to rely on bid-rotation nor to bid competitively.'® This raises the question
whether there are additional gains from intertemporal collusion compared to the best static
equilibrium. Indeed, we show below that the gains from intertemporal collusion over and

above the best static equilibrium grow without bound in this case.

Proposition 6 Suppose in the best equilibrium of a static second-price sealed-bid auction
with N > 2 bidders b € (0, v"]. Then in any infinitely repeated second-price sealed-bid auction,
there exists a sequence of perfect public equilibria such that as 6 — 1, the difference in
expected payoffs between these equilibria and repeatedly playing the best static equilibrium

grows without bound.

Proof: Let the best static equilibrium be indexed by b € (0,v"]. Call it a b-equilibrium.

9See Maskin and Riley [1996], Amann and Leininger [1996], and Plum [1992] respectively, who prove
these results under weaker distributional assumptions than ours.
0For an example see Blume and Heidhues [2001].
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If b = vh then the above proposition follows from Proposition 4. Thus, in the following
we consider only b e (0,0"). We construct an equilibrium in which along the equilibrium
path play alternates between periods in which the ?)—equilibrium is played and improvement
periods in which the expected payoff exceeds the expected payoff from the E—equilibrium. We
say that a player has role b in period ¢ in which the b-equilibrium is played if he is assigned
to bid b for all v < b in period t. Observe that the expected payoff FE (v) conditional on being
assigned role bis greater than the expected payoff E(v) of the other role.

Next, we introduce the bid functions used in the improvement periods and show that
they increase the players’ expected payoff in a given period s above the expected payoff of
the E—equilibrium. Let 0 < ¢ < b. Let some player 7 bid b— ¢ for all v < b and bid v — ¢ for
all v > b; furthermore, let all players j # 4 refrain from submitting a bid for all v < b and
bid v — ¢ for all v > b. Note that with this bid functions the allocation is the same as in the
IA)—equilibrium and expected payments are lower. Hence, the bidders gain from such a change
in the bid functions. Next, we show that the bid functions used in the improvement periods
are enforceable for sufficiently high 4.

Let ¢ := %[E (v) — E(v)]; ¢ is the one-period discounted difference in the value of being
allowed to enter a fair lottery with N — 1 players in which role b is the winning prize and
role j # b is the losing prize and the value of being assigned the losing prize with certainty.

Consider an improvement period s and set ¢ = min{¢, ?)} If no player wins the object in
period s, players bid competitively in all following periods ¢ > s. Otherwise, the winner of
period s is excluded from the chance of obtaining the role of player b in period s 4+ 1 with
some probability «, where a =1 if ¢ < b and

(N—=1)b

o = =

O[E(v) = E(v)]

if ¢ > b.

First, we will observe that player ¢ cannot gain from either bidding below b — ¢ or not
bidding for any value v € [0, 13] Taken his rivals’ strategies as given, player ’s probability of
winning and the price he pays are unaffected by whether he bids b — ¢ or whether he bids
belo, b— ¢). We need to show that player i cannot gain from not submitting a bid for any
value v € [0, 13] Given the equilibrium strategy of his rivals, not submitting a bid only affects

his current period payoff if all other player bidders have valuations v € [0, IS) In this case,

22



however, he looses all future collusive benefits, which are greater than the current period
gain for high enough §. Also, bidding b > b — ¢ for values v € [0, 13] is not optimal because
given his rivals’ equilibrium strategies, this affects his current period payoff only if one of
his rivals bids above b — ¢. In this case, however, the price he pays p > b — ¢ and his loss in
continuation payoff from winning is ¢, implying that p + ¢ > v. Therefore he prefers not to
bid above b — ¢ for values v € [0, 5] Furthermore, it is easy to check that bidding v — ¢ for
v > b is optimal for all players. It remains to check that no player j # ¢ has an incentive to
bid for values v < b. In this case, a player 7 wins the object only if he bids above b— c, in
which case the price he pays p > b — ¢ and his loss in continuation value is equal to c. Thus,
in this case the net value of winning the object in period s is equal to v — p — ¢ < 0 and
therefore the player j prefers not to bid.

Hence, for high enough 6 we can construct an equilibrium in which play alternates between
improvement periods in which the players’ expected payoff is greater than the expected payoff
from the I;—equilibrium and periods in which their expected payoff are equal to the expected
payoff of the i)—equilibrium. In particular, this implies that as 6 — 1, the difference in
expected payoff between the improvement equilibria and repeatedly playing the I;—equilibrium
grows without bound. O

Suppose in the best static equilibrium of the second-price sealed-bid auction with N > 2
bidders, bidders rely neither on bid-rotation nor on competitive bidding. Then, as shown
in the proof above, bidders can gain additionally from intertemporally colluding without
introducing any additional allocative distortion. The reason is that in any collusive static
equilibrium with N > 2 bidders, there exist an interval of low valuations for which nobody
submits a bid. Loosely speaking, if all bids are lowered by some small amount then the
expected current period price is lowered without changing the current period allocation of
the good. To induce bidders to lower their bids, the winner’s chance of being assigned the
unique asymmetric role in the next period is reduced. Since the unique asymmetric role
yields a higher expected payoff, this induces players to bid less aggressively.

We are left to show that collusion is also feasible in the absence of communication between

competitors.
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5 Collusion without Communication

The main result in this section is that as the discount factor converges to one, the constraints
imposed by attainability do not lower the average per-period payoff that can be reached in a
perfect public equilibrium. This result together with the results of the previous section imply
that for high enough discount factors (i) there exist attainable perfect public equilibria with
payoffs greater than the payoffs from bid rotation in any standard auction and (ii) there exist
attainable perfect public equilibria with payoffs greater than the payoffs from competitive
bidding in the first-price and the all-pay auction. For the case of the second-price sealed
bid auction, we show that there exists an attainable perfect public equilibrium that beats
competitive bidding and has a simple structure. In this equilibrium, all bidders behave
symmetrically except that sometimes the last period’s winner is treated differently from his
competitors. This together with earlier results implies that (iii) there exist attainable perfect
public equilibria with payoffs greater than the payoffs from playing the best static equilibrium
in the second-price sealed-bid auction. We conclude by showing that the expected payoffs
in any perfect public equilibrium of the second-price sealed-bid auction are bounded away
from the full collusive gain. In summary, among patient bidders, tacit collusion is as effective
as collusion with communication about strategies. However, whether tacit or not, collusion
need not be efficient.

Let ¢(d) be the average per-bidder payoffs (across bidders and time) in a perfect public
equilibrium. Let ¢ denote a sequence of average per-period payoffs of perfect public equilibria

for which the discount factor § — 1.

Proposition 7 In any standard auction, for any sequence of perfect public equilibrium av-
erage payoffs @, there exists a sequence of attainable perfect public equilibrium payoffs ¢ that

satisfies lim sup;_,, ¢ > limsup;_,; ¢.

Proof: Let @ := limsup;_,; ¢. If @ is less or equal to the payoff from one-period of com-
petitive bidding, then the result holds since repeated competitive bidding is an attainable
perfect public equilibrium.

Therefore, assume from now on that @ is strictly greater than the payoff from one-period
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of competitive bidding. Hence, there exists a subsequence of ¢ with the same lim sup such
that as 0 — 1, the overall gain from the collusive perfect public equilibria associated with
that subsequence over and above the payoff from repeated competitive bidding grows without
bound. For the remainder of the proof, we will identify ¢ with that subsequence.

For any () € ¢, we will look for a corresponding attainable equilibrium per-period
payoffs ¢(d) and thereby construct a sequence ¢. This sequence that we will construct below
satisfies p = limsup;__,; ¢, and thereby proves Proposition 7.

In particular, for any ¢(J) € ¢, we will construct an attainable strategy profile with
per-period payoff ¢(d). For low enough 4 this strategy profile may not be an equilibrium, in
which case we exchange ¢(0) by the per-period competitive bidding payoff. For high enough
d, however, we show that the attainable strategy profile associated with ¢(¢), is indeed an
equilibrium. Thus, for high enough d, we can set () = @(J). We then simply verify that
® = limsup;_,; @.

For any perfect public equilibrium strategy profile associated with ¢(0), we will construct
an attainable strategy profile (or candidate equilibrium) that goes through three phases
along the equilibrium path: a naming phase, a reward phase, and an collusive phase. The
naming phase serves to remove the initial symmetry restriction, the reward phase to provide
appropriate incentives for the naming phase, and the collusive phase prescribes that players
play the perfect public equilibrium strategy profile associated with ¢(0).

If there are N bidders, the naming phase consists of N — 1 rounds of competitive bidding
with successive exclusion. Each bidder’s strategy prescribes to bid competitively in period 1,
for any winner of the first N — 2 rounds to stay out for the remaining periods of the naming
phase (until period N), and for the remaining bidders to bid competitively (in the auction
with the remaining number of bidders), provided there has been a winner in all the previous
periods and no repeat winner. If in any one of the first N — 1 periods there was no winner,
each player bids competitively forever after. If there is a multiple winner during the first
N — 1 periods, again all players immediately revert to competitive bidding forever after. If
there have been N — 1 distinct winners during the first N — 1 periods, a reward period starts
that lasts for K periods (where K is yet to be determined).

At the beginning of the reward period, a single player is randomly selected to become
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eligible for a reward. Each of the NV — 1 winners is equally likely to be selected. The eligible
player then enters a lottery that determines whether he will actually receive the reward. The
probability that an eligible player will be rewarded is a function of the period ¢ in which he
won the object. Denote this probability by «(¢). The reward is to become the designated
winner for all of the K reward periods. If during the reward phase any bidder other than the
designated bidder wins, all bidders immediately revert to competitive bidding thereafter. Let
V(n) denote the expected value from participating in competitive bidding with successive
exclusion starting with n players. Name the N —1 winners by the period in which they won.
Name the remaining player N. Players N and N — 1 need not be rewarded. Since player
N cannot become eligible, we can simply ignore him. For player N — 1, set y(N — 1) = 0.
Consider a player in period N — j. His continuation payoff after winning in that period

equals

1 1 - 0K
07y (N = ) v+,

N — 1-96
where x represents a part of the continuation payoff that is independent of winning or losing.

The continuation payoff from losing in that period equals

1]2 _ 5K

V(j) + sz Z’y —j+k 6ve+x.

N -1

We have to be able to assign a value y(N — j) with 0 < (N — j) < 1 that equates the

continuation payoffs. This can be done if

1 1=K 1 . ,j—21-6K
§i-1 e> V(i 5i—1 e
N1 TV 2Vt e
which is equivalent to p
1 2_...,1-9¢
T >V (4).

N-1j 1—-94§
This condition holds for large enough ¢ and K since
. 16K
il 1-0

= K.

Finally, let us check that indeed after any history, players have an incentive to conform with
the prescribed strategy for large enough discount factors. First, during the naming face,
conditional on other bidders using the prescribed strategy, any currently excluded bidder

prefers not to enter a bid. She can only gain from bidding if she wins. However by doing
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so she causes everyone to bid competitively forever after instead of colluding after period
N —1+ K. Since N —1+ K is finite and the gains from the collusive perfect public equilibria
associated with ¢ increase without bound as 6 — 1, there exists a § such that for all § > ¢
she prefers not to enter a bid. Second, since for a currently included player the continuation
payoffs from winning and losing have been set equal, the incentives are exactly as in the
one-shot auction, and thus competitive bidding (taking into account the number of included
players) is optimal. Third, during the reward phase, we only have to provide incentives for
the excluded players. None of the excluded bidders has an incentive to submit a bid because,
should he win, the gains are limited to a finite number of periods (less than K') whereas she
loses the benefit of collusion, whose size can be made arbitrarily large. Fourth, the collusive
strategy used on the equilibrium path after period N —1 + K is a continuation equilibrium
since it is the strategy profile associated with ¢(d). Finally, the prescribed behavior off the
equilibrium path forms an equilibrium after any history that is off the equilibrium path, since
either the strategy prescribes repeated competitive bidding or we are in a history reached
in which players play the continuation equilibrium ¢(d), and we know that the continuation
equilibrium prescribes an equilibrium following that history.

Thus, we have verified that for high enough d, the strategy profile $(¢), is indeed an
attainable perfect public equilibrium. We are left to show that % = limsup;_,; ¢. For high
enough 4, the difference between the payoffs of the equilibria associated with ¢(d) and @(9)
is bounded by

1 6N71+K

and hence the difference in per-period payoffs is bounded by
(1= ") (),

which goes to zero as § — 1. O

In the proof of Proposition 7, we construct “naming equilibria” that go through three
phases: a naming phase, a reward phase, and a collusive phase. During each period of
the naming phase a different bidder wins the object. Bidders are named by the period in

which they win the object and winners abstain from bidding for the remainder of the naming
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phase. The reward phase serves to ensure participation of all the unnamed bidders at any
stage of the naming phase. In the above construction we rely on a public randomization
device during the reward phase in order to provide proper incentives in the naming phase.

One can construct such naming equilibria without making use of public randomization
devices during the naming phase and reward phase. The construction is as follows: During
the reward phase the first n—2 named bidders are rewarded in reverse order. The last named
bidder, the winner of an auction with two bidders, need not be rewarded. The second to last
winner from the naming phase, the winner from the auction with three remaining bidder,
is rewarded with being the sole bidder for v3 periods at the beginning of the reward phase.
More generally, the winner from the auction with n remaining bidders is rewarded with v,
periods of being the sole bidder following the reward for the winner of the auction with n —1
periods. We will refer to v, as the “reward” to the winner of the auction with n remaining
bidder.

For any standard auction, recall that v® is the expected payoff to the winner from bid
rotation in the static auction. Therefore, the expected present value of the reward to the

winner of the auction with n remaining bidders is given by

Un—1
Tn(V3y .oy Uy 0) 1= S 1Hvst e tin—1) (Z 5’“1}6) .
k=0

Conditional on reaching the reward phase, for sufficiently high discount factors, any
reward pattern can be enforced with the threat of reversion to competitive bidding. To
construct proper incentives in the naming phase, we proceed recursively:

Let E? denote the expected ez ante value from participating in the auction with two bid-
ders in the competitive equilibrium. Bidding behavior in the auction with three remaining
bidders is based on valuations v + 73(v3;) — dEs. Note that for ¢ close to one and suffi-
ciently large v3 we have r3(v3;9) > dF5. Thus valuations are increased by a common fixed
amount and by assumption the resulting auction has a unique symmetric equilibrium with
a monotonic bid function, which guarantees that all three bidders participate and one gets
named. Given that equilibrium, there is a well-defined ez ante value from participating in
the three-bidder auction knowing that non-winners participate in the two-bidder auction.

Denote this value by E3(v3;8). Then bidding in the auction with four remaining bidders is
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based on valuations v + ry (v, v4;0) — §E?(v3;0). E*(v3;0) is bounded, whereas ry(v3, v4; 9)
can be increased without bound by choosing ¢ close enough to one and v, sufficiently large.
Therefore, there exists a value of v, and ¢ such that r4(vs, v4;8) —0E?(v3;6) > 0 for all § > 4.
Hence, there exists a well-defined ez ante value from participating in the auction with four
remaining players. Denote this value by E*(v3, v4;6).

Proceeding recursively, we can find vs,...,1,, and J such that
E™(vs, ..., vp;0)

are well defined values for participating in the auction with n remaining bidders, and

TV, .. s 6) > E" Nus, .. vp:6) VO > d.

It should be noted that we can exchange perfect public equilibria with perfect Bayesian
equilibria in Proposition 7 and its proof.!! Hence, the insight that sufficiently patient bidders
do not significantly suffer from language constraints is robust. We obtain the following two

immediate corollaries concerning collusion without communication.

Corollary 1 For any infinitely repeated standard auction, bid-rotation is never the optimal

form of tacit collusion for sufficiently patient bidders.

Proof: The corollary follows from Propositions 4 and 7. O

Corollary 2 In any infinitely repeated first-price or all-pay sealed-bid auction, if bidders
are sufficiently patient there exists an attainable perfect public equilibrium with an expected

payoff that exceeds the expected payoff from competitive bidding.

Proof: The corollary follows from Proposition 5 and 7. O
Another interpretation of the corollary is that there exists gains from intertemporal col-

lusion relative to the best attainable equilibrium in the one-shot game. Because competitive

HFormally, however, one needs to (straightforwardly) adapt Definition 2 to allow players’ strategies to
also depend on their private history.
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bidding is the unique equilibrium in any one-shot first-price or 2-bidder all-pay auction, the
above corollary implies for these cases also that the average gains from collusion without
communication about strategies are higher than from collusion with prior communication
(but without side-payments) in the one-shot game.

The above results relied on a elaborate language constructions at the beginning of the
game. This is not always necessary. In the second-price auction, for example, bidders only

need to be able to single out the last winner in order to tacitly collude.

Proposition 8 In any infinitely repeated second-price sealed-bid auction in which bidders
are sufficiently patient, there exists a name-simple equilibrium that payoff dominates repeated

competitive bidding.

Proof: We construct an equilibrium that relies on three regimes: during a non-exclusionary
regime for some ¢ > 0, bidders with value v > ¢ bid v — ¢ and bidders with value v < ¢ do
not bid, during an exclusionary regime all but one player bid their value and the excluded
player does not bid, and in a punishment regime everyone bids their value.

Let Wy denote a player’s expected one-period payoff from participating in competitive
bidding with N players. Let W (c) denote the expected value from the equilibrium we are

about to construct. Define

A0 = S FO T + FON 11— )W ()]

Note that a(c,d) is well-defined for small ¢ because as ¢ converges to zero, the denominator
converges to 0wWy_1. In the following, we will only consider values of ¢ for which a(c,d) €
(0,1).

The game starts in the non-exclusionary regime. If the game is in the non-exclusionary
regime in period ¢, it switches to the exclusionary regime with probability «(c, ), if someone
wins the object. In the exclusionary regime the last winner is excluded. With probability
1 — «afc,0) the game remains in the non-exclusionary regime. From the exclusionary regime
the game returns with probability one to the non-exclusionary regime unless the excluded

player wins the object. In the latter case the game permanently reverts to the punishment
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regime. If no player wins the object in a non-exclusionary regime, the game remains in the
non-exclusionary regime.
The difference D between all players’ expected payoffs from the above strategy and

repeated competitive bidding satisfies:

D > Fe)¥(—c¢)+[1—=F(c)" e+ 6F(c)VD
4 S[l= F()M] {(1 — a(e,8))D + ale, ){(N — Dwy_ — Nwy)} + 6ale, 6)D }

Therefore,

D { 1= §F(c)N = 6[1 = F(&)M{1 — a(c, 6)(1 — 5)}}

> (—=e)(F(e)N + F(o)V N 4+ c+ ale,0)0[1 — F(e)N{(N — )wy_1 — Nwy}
> alc, 0)0 {{[1 — F(o)™ Mwn-1 + F(e)" (1 = 0)W () }(—2F ()" )
+[1 = F(e)V Moy-1 + F(e)V (1 = §)W(c)

+[1 = Fe)"(N - Doy, —[1 - F(c)N]NwN} .

One easily checks that for small ¢ the expression on the right hand side of the above inequality
is positive. Therefore, D > 0.

To show that our strategy is an equilibrium strategy, it suffices to check that no bidder
has a profitable one-shot deviation after any history. After any history in which the strategy
prescribes competitive bidding forever after, the incentives are identical to the incentives in
the one-shot game. Thus bidding one’s value is a best reply. After any history that places
bidders in a non-exclusionary regime, it is a best response for all bidders with values below
¢ not to bid because their instantaneous payoff from winning v is less than the reduction in
their continuation payoff, a(c,d)d{[1 — F(c)NYHwn_1 + F(c)¥ (1 — §)W(c)} = c. For all
bidders with value v > ¢, it is a best response to bid the net gain of winning the object,
v —c¢. During an exclusionary regime, it is a best response for all non-excluded players to bid
their values because in equilibrium their continuation values are not affected by their bids.

For the excluded player it is a best response to not submit a bid if v < %. For any ¢ such
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that D > 0, there exists a § such that for all § > 9, v < 5% as can easily be checked from
the inequality above.

The strategy profile is name-simple because all bidders behave symmetrically except for
an excluded bidder in an exclusionary regime; this bidder however was the last period’s
winner and is thereby differentiated (named). O

Thus, we showed that simple collusive schemes can be effective. The above result also

enables us to state the following:

Corollary 3 In any infinitely repeated second-price sealed-bid auction with N > 2 suffi-
ciently patient bidders, there exists an attainable perfect public equilibrium with an expected

payoff that exceeds the expected payoff from repeatedly playing the best static equilibrium.

Proof: If players bid competitively in the best static equilibrium, the corollary follows from
Proposition 8. Otherwise, the corollary follows from Proposition 6 and 7. O

Thus, in the second-price auction the average gains from intertemporal collusion with-
out communication are higher than from collusion with communication (but without side-
payments) in a one-shot interaction.

Knowing that attainability does not impose significant constraints on collusion among
sufficiently patient bidders, one may ask whether there are attainable perfect public equi-
libria that sustain efficient collusion in our environment. Proposition 7 implies that efficient
collusion in attainable perfect public equilibria can be approximated if and only if there is
such an approximation without the attainability requirement. This turns out to be impossi-
ble for second-price auctions. We will demonstrate the impossibility of efficient collusion in
attainable perfect public equilibria by establishing an anti-folk-theorem: Even without the
attainability constraint, collusive payoffs are bounded away from the efficient frontier. This
is a consequence of the informational limitations in our environment.

We say that bidders achieve the full collusive gain in a given period, if the bidder with the
highest valuation receives the object at a zero price. In contrast, the bidders’ expected payoff
is bounded away from the full collusive gain if assigning the object with high probability
to the highest-valuation bidder requires that the expected price is significantly above zero.

Formally, let i(t) € arg max;{v;(¢)}, and o a strategy profile in the repeated auction. For any
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probability K, we say that the allocation induced by the bid functions b;(v;(t), h(t),0), i =
1,..., N is K-efficient in the period following history h(t) if

Prob{i(t) = arg max bi(v;(t), h(t), o)} > K.

Given the bid functions b;(v;(t), h(t),0), i =1,..., N, there will be an expected value of the
second order statistic of bids. Refer to this expected value of the second highest bid as the

expected price.

Definition 6 Bidders’ expected payoffs are bounded away from the full collusive gain if there
exists I < 1 and p > 0 such that in any period t following history h(t) in which the allocation
that is induced by b;(vi(t), h(t),0), i = 1,..., N, is K-efficient with K > K, the expected
price p satisfies p > p.

Proposition 9 In any perfect public equilibrium of the second-price sealed-bid auction with

N > 3 bidders, bidders’ expected payoffs are bounded away from the full collusive gain.

The proof is somewhat technical and therefore relegated to the appendix. The intuition
for the result however is simple: Near efficiency requires that bid functions are similar. As
a consequence expected continuation values from winning vary little with the level of one’s
own bid. A low expected price requires low bids, including low bids at high valuations.
Bidders will only bid low at high valuations if winning causes a sufficient loss in expected
continuation value. Hence, if the expected continuation value from winning doesn’t vary
much with the bid, bidders with low and moderate valuations strictly prefer to refrain from
bidding. This contradicts near efficiency.

Observe that the Proposition (and its proof) extends to the case of two bidders as long
as bidders condition their behavior on A(t) only. In this special case, however, the second
highest bid in all past periods is common knowledge and in a PPE players could condition

their behavior also on these past bids.

6 Related Literature

In this section, we discuss three strands of related literature. First, we relate our work to

papers on strategic uncertainty, especially attainability. Second, we compare our paper to
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other papers on tacit collusion in auctions and industrial organization. Finally, we discuss
papers on infinitely repeated games with imperfect observability.

Strategic uncertainty has been a concern in game theory for a long time. For this reason
standard textbooks (see for example Moulin [1986, p.106] or Kreps [1990, p.411]) frequently
describe Nash equilibria as self-enforcing agreements. One envisions that players meet before
the game to engage in pre-play communication. For any agreement emerging from such a
meeting to be stable, it will have to be a Nash equilibrium. However, as Luce and Raiffa
[1957, p.172] point out, this perspective on how players might coordinate their expectations
gets around the fact that “... the equilibrium notion does not serve in general as a guide to
action.” Nevertheless, it is a matter of practical concern, how agents in a strategic situation
will choose their course of actions without the benefit of pre-play communication, or some
other coordinating mechanism. While the symmetry restrictions imposed by attainability
may not provide a definitive answer to this puzzle, they operationalize constraints that
players face when they cannot use communication to coordinate their strategies.'?

Crawford and Haller [1990], henceforth CH, define attainable strategies and use them
to study two-player games with complete symmetry (i.e. a complete absence of a common
language) and common interest.!* Blume [2000] extends CH’s analysis to allow for partial
structure, interpreted as prior understandings (similar to grammar in language), that aid
players ability to coordinate. In Section 3, we show how such prior understandings can be
incorporated into our model of tacit collusion. Bhaskar [2000] applies CH’s approach to
a game with conflict, the infinitely repeated Battle of the Sexes. Our paper is related to
Bhaskar in that we use idea of attainability in repeated game with a conflict of interest. In
the repeated n-bidder auction setting we study, however, the problem is compounded by the
players’ private information.

That the history of the game enables players to overcome initial symmetry has been shown
in a number of related experimental papers. Blume, DeJong, Kim and Sprinkle [1998] and

[2001] experimentally study the emergence of meaning for a priori meaningless messages

12Gymmetry restrictions also play a prominent role in the “rational theory of equilibrium selection” of
Harsanyi and Selten [1988]. In particular, they also require their solution to be invariant to the renaming of
players, actions, and choices.

I3Kramarz [1996] extends CH’s work to n-player pure coordination games. Alpern and Reyniers [2000]
use attainable strategies, subject to additional Markov restrictions, to study games with many players whose
goal is to disperse themselves among a finite set of locations.
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in repeated sender-receiver games. In these studies the initial coordination probability in
a common interest game is close to 50% and rises over time as messages acquire meaning
as a result of repeated play. Similar results hold when there is some conflict of interest
between senders and receivers. Blume and Gneezy [2000] find evidence for attainability in
cognitively simple games. Blume and Gneezy [2001] show that the attainability idea is also
useful in settings where players do not have common knowledge of the language they are
using. They show that players form beliefs about each others languages and use cognitive
forward induction, i.e. signal their language if given the opportunity.

There is also some evidence that bidders in auctions try to use the history of the game
to coordinate when they are prevented from communicating directly. One example is the
use of code bidding. In the FCC auctions bidders used the trailing digits of a bid to com-
municate when it was still feasible (see Cramton and Schwartz [2000]). Another example is
the signaling in early rounds of an auction how to eventually split the market, as occurred
in the German 1999 spectrum auction of ten licenses.!* Here, the firms used the observable
history of the game (in this case past bids) to desymmetrize the objects and coordinate on
a noncooperative equilibrium in which they shared the market.

That players use substitutes for explicit, face to face communication can be observed in
non-auction settings, such as the airline market, as well. The major US airline companies
compete in hundreds of city pairs, with changing costs and demand conditions, over time.
To successfully coordinate on a collusive equilibrium in the absence of any explicit com-
munication therefore seems a formidable task. From 1988-1992 airlines used the ATP fare
system to exchange not only current fares but also future intended fares and, through the
use of footnotes in the database, to assign different city-pair fares a common symbol. This
expanded (and organized) the observable history of the market game considerably and as
the DOJ argued in its Competitive Impact Statement [1994] enabled the firms to overcome
uncertainty in coordinating their pricing behavior through an “electronic dialogue.” In the

settlement the DOJ contended that “there may be an element of communication inherent

1 Grimm, Riedel and Wolfstetter [2001], who consulted one of the bidders, state that: “Mannesmann
started with a jump bid on all frequencies for two reasons: to bring the price uniformly to the critical level at
which smaller providers would quit the auction, and to coordinate efficiently with T-Mobil on how to divide
the frequencies numbered from 1 to 10.” They also provide a game-theoretic analysis of this auction, which,
however, abstracts from the coordination issue.
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in fares that are actually available and intended to be sold,” which is considered legal, but
that actions should be avoided that convey “other information concerning the defendant’s
planned or contemplated fares or changes to fares.”!® By restricting the information firms
were allowed to publish, the settlement reduces the observable history that firms can use as
a substitute for explicit, face to face communication. While this case is considerably more
complex than our simple auction environment, their are obvious parallels for future work to
explore.

Our paper is related to Bernheim [1984] and Pearce [1984] work on rationalizability in
that rationalizability captures aspects of strategic uncertainty as well. But rather than
constraining beliefs as attainability does, it forces us to be permissive. For instance, rather
than ruling out a bid rotation scheme in a one-shot second-price auction, that has a particular
designated bidder win the the object, it rationalizes beliefs consistent with a variety of such
schemes that result from exchanging the role of the winning bidder.

Section 5, where we construct a sequence of equilibria with payoffs unboundedly higher
than the payoff from bid rotation or competitive bidding, draws on and strengthens results in
Skrzypacz and Hopenhayn [1999], henceforth SH. Using arguments from Abreu, Pearce and
Stachetti [1990], SH provide conditions for the existence of noncooperative equilibria that
payoff dominate both competitive bidding and bid rotation in a class of repeated auctions.
They explicitly construct such equilibria for the case of first- and second-price auctions.
We show that these gains can be made unbounded and that there need not be designated
bidders at the beginning of the auctions.'® We also differ from SH in that we investigate the
restrictions imposed by the lack of explicit communication about strategies.

Aoyagi [2000] analyzes a similar environment as SH and we do in which he allows for

affiliated values. Whereas we analyze the case of less communication than SH, he analyzes

15Gee the “Antitrust Division’s Statement of Decree Applicability,” attached to the Competitive Impact
Statement concerning the United States of America vs Airline Tariff Publishing Company [1994].

16Recently, we became aware of a independent work by Skrzypacz and Hopenhayn [2001] that also extends
their earlier results. Focusing on a two player example in which each player draws his value from an identical
and symmetric distribution, they show that the average per-period gains can be substantial. While their
construction is somewhat similar to ours in spirit, their results do not subsume ours for the following reasons:
we do not rely on symmetric distributions, we prove our results for any number of bidders, we show that
bidders can do better than bid rotation in any standard auction, we show that bidders can always gain
relative to the best static equilibrium in the second-price auction, and we explicitly show that in the all-pay
auction players can gain relative to competitive bidding.
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a richer communication environment than SH. In his setting bidders communicate by way
of a mediator to whom they report their private information and from whom they receive
bidding instructions. He also shows that bidders can improve on competitive bidding and
bid-rotation.

Athey, Bagwell and Sanchirico [2000] study symmetric equilibria in a repeated Bertrand
game with private information. In these equilibria “firms move through collusive and war
phases together.” This symmetry condition is much stronger than attainability and close to
the name-freeness condition that we discuss below.!” Name-freeness rules out collusion in
repeated standard auctions whereas Athey, Bagwell and Sanchirico find symmetric collusive
equilibria in the repeated Bertrand game.!8

In a related paper, Athey and Bagwell [2001] study the impact of cost announcements in
a repeated Bertrand game. They model lack of communication as an inability to announce
one’s type in a given period and prove a Folk Theorem, which also holds for discount fac-
tors strictly less than one. They do not address the strategic uncertainty that the lack of
communication creates.

Our paper is also related to the literature on infinitely repeated games with imperfect
public information. We use perfect public equilibria, which were introduced by Fudenberg,
Levine and Maskin [1994], henceforth FLM. One appeal of public perfect equilibria is that
they are recursive and thus dynamic programming techniques apply. Under general con-
ditions, FLM show that one can establish a Folk Theorem in perfect public equilibria for
finite-action-set stage games if there is a sufficient number of public outcomes which are
observable. If, however, the action set is large relative to the observable public outcomes,
then a Folk Theorem may not hold. Counterexamples, that is games in which the payoffs are
bounded away from the efficient payoffs for any discount factor, have been given in Radner,
Myerson and Maskin [1986] and in FLM. In our setup in which only the winner is observed,
we show that, no matter how patient the bidders are, their average payoffs are bounded away

from collusive efficiency in the repeated second-price sealed-bid auction. We thus provide a

17 Abreu, Pearce and Stacchetti [1986] also focus on symmetric equilibria of this kind.

BInterestingly, Athey, Bagwell and Sanchirico motivate their focus on symmetric strategies by arguing
that they are appealingly simple. While explicitly refraining from proposing how firms coordinate on an
equilibrium, they argue that the asymmetric equilibria are most plausible “when a small number of firms
(...) communicate explicitly.”
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counterexample in an auction environment.

Intuitively, it may seem reasonable that bidders could use Radner-type review strategies
to enforce collusive behavior (see Radner [1985]). We show, however, that if players condition
their behavior on public information only (i.e. how often and when a player won the object),
then their average payoffs are bounded away from collusive efficiency. If they are allowed to
condition their behavior on private information, then it remains an open question whether
all PBE-payoffs are bounded away from collusive efficiency. The problem is that repeated
games with private monitoring are not well-understood.

When relying on private rather than public histories, even if one player is almost sure that
another has deviated and would want to punish if he believed that others were punishing,
he cannot be sure that others are almost sure that someone has deviated because there
is no common knowledge of the relevant history. In particular, this implies that players
play correlated rather than continuation equilibria and it is not clear whether dynamic
programming techniques can be used. If players can communicate, this problem can be
overcome since the players may use cheap talk to generate common beliefs about the histories,
as in Compte [1998] and in Kandori and Matushima [1998]. In this paper, however, we
are interested in collusion without communication and hence we cannot use the techniques
applied in Compte [1998] and Kandori and Matushima [1998] to check whether all perfect

Bayesian equilibria are bounded away from the full collusive gain.

7 Conclusion

In this paper, we interpreted tacit collusion as collusion without communication and adopted
a stringent interpretation of “without communication.” We argued that the lack of communi-
cation between players leads to strategic uncertainty, which we modelled through symmetry
restrictions on their repeated game strategies. This enabled us to investigate how symmetry
restrictions - introduced through the lack of communication about strategy - interact with
restrictions on information about past actions. We showed that severe symmetry restric-
tions (requiring name-free strategies) completely rule out collusion in our informationally

restrictive environment in which bids are unobservable, whereas they do not rule out col-
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lusion if past bids are observable.!® We argued in favor of modelling strategic uncertainty
through requiring players to use attainable strategies, which impose less extreme symmetry
restrictions that acknowledge the possible removal of symmetry constraints through repeated
interaction. We showed that attainability limits collusive payoffs with short time horizons
or impatient bidders. Patient bidders, however, can overcome the symmetry constraints
imposed by attainable strategies. Focusing on the repeated second-price sealed-bid auction,
we showed that for patient bidders the informational constraints are more important than
the constraints imposed by the strategic uncertainty, whereas the reverse often holds for
impatient bidders.

Throughout, we used symmetry constraints in a symmetric game and it is only fair
to ask what role, if any, we ascribe to symmetry in general. One answer is that even if
there are asymmetries, the agents may have no clear sense of how to use them. In this
paper, for example, we modelled bidders as initially nameless and therefore unable to use
strategies that make use of players’ identities. However, we interpret literal namelessness
only a modelling device. In practice, even if names differ, it suffices that they do not induce
natural role differences. We also assumed that players draw their values from identical
distributions. Again differences in distributions may not automatically confer natural role
differences, although here the problem is a bit more delicate because it is likely that any
equilibrium will prescribe different behavior to bidders with different distributions.?’

Our results indicate that, relative to standard noncooperative models, acknowledging the
strategic uncertainty created by the lack of communication may severely limit the ability to
collude in one-shot games or environments in which the discount factor is low. The strategic
uncertainty is less important in determining players ability to collude if interactions are
frequent (or discount factors high). Hopefully, our results help to build a general theory of
collusion in the absence of explicit communication. Such a theory is needed to guide policies
aimed at reducing communication between competitors such as the one implemented by

settlement between the DOJ and major airline companies discussed in the previous section.

19That there is scope for name-free collusion if bidders observe past bids is obvious. Think for example
of a simple trigger strategy in which players bid zero if all players have been bidding zero in the past and
bid competitively otherwise. For high enough discount factors, this is an equilibrium if bid rotation yields a
higher payoff than competitive bidding.

20This is not always the case. Take for example the second-price sealed-bid auction.
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Appendix: Proofs
The following Lemmas are used to prove Lemma 9 below.

Lemma 6 In any all-pay sealed bid auction in which values are reduced by ¢, 0 < ¢ < vy,
there exists a symmetric equilibrium. For positive net payoffs, v — ¢ > 0, the equilibrium bid

function has the form
b (0, ¢) = (v — )FN "L (v) — / "N ().

The proof relies on standard arguments and is therefore omitted. For any all-pay sealed
bid auction define ¢,(c) := b°(v,0) — b*(v, ). ¢y(c) is the reduction in equilibrium bids for

bidders whose values v are reduced by c.

Lemma 7 In any all-pay sealed-bid auction ¢,(0) = FN=1(v).

Proof: From Lemma 6, ¢,(c) = cFV"!(v) — [§ FY~1(t)dt. Hence,

by(c) = FN"1(v) — FN"1(c).

Lemma 8 In any all-pay sealed bid auction one has,

1

| 0u0) Fo)do = <.

Proof: Integration by parts gives that

[ FY @) @)do = Y @) F @R~ [TV = DFY2(0)f (0)F (0)do.

Hence,
Vh

N[ FY ) f(v)do = [FY7 (o) F (o))"
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Thus,

Since, by Lemma 7,

one has [J* ¢,(0)'f(v)dv = . O

Lemma 9 In any infinitely repeated all-pay sealed-bid auction, there exists a sequence of
perfect public equilibria such that as 6 — 1, the difference in expected payoffs between these

equilibria and repeated competitive bidding grows without bound.

Proof: We construct an equilibrium that relies on three regimes: during a non-exclusionary
regime for some ¢ > 0, bidders with value v > ¢ bid b¢(v, ¢) and bidders with value v < ¢ do
not bid except for a default bidder who submits a zero bid for v < ¢; during an exclusionary
regime all but one bidder bid according to b%,_, (-, 0), the symmetric equilibrium bid function
for N —1 bidders, and the excluded bidder does not bid; and in a punishment regime everyone
bids b¢(v, 0).

Let wy denote a bidder’s expected one-period payoff from participating in competitive

bidding with N bidders. Define
c

afc, ) = p—

In the following we will only consider values of ¢ for which a(c,d) € [0,1).

The game starts in the non-exclusionary regime. One bidder is randomly chosen to be
the default player. If the game is in the non-exclusionary regime in period ¢, it switches to
the exclusionary regime with probability (e, d). In the exclusionary regime the last period’s
winner is excluded; if no player won the object last period’s default player is excluded. With
probability 1 — a(c, ) the game remains in the non-exclusionary regime and a new default
player is chosen. From the exclusionary regime the game returns with probability one to the
non-exclusionary regime unless the excluded player wins the object. In the latter case the

game permanently reverts to the punishment regime.
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For e > ¢ > 0, the difference D between the sum of players’ expected payoffs from the
above strategy and from repeated competitive bidding satisfies:

D > F(e)(=¢)+ N[l - F(e)]" / " bo(e)f(0)dv

€

+ 6(1 - ale,8))D + 6a(c, ){(N — Dwy_1 — Nwy} + 6*alc,d)D .

Therefore,

D(1—6(1 — a(c,8)) — 8*alc,d))

> (—e)F(c)¥ + N[1 - F(e))¥ /Uh ou(c) f(v)dv + da(c, 0){(N — 1)wy_; — Nwy}.

€

Since for ¢ = 0, the right-hand side of the above expression equals zero, the sign of the
right-hand side for small positive ¢ equals the sign of its derivative with respect to c evaluated

at ¢ = 0. This derivative equals

v N —1wy_1 — Nw
NTL = B [ 6,(0)fo)aw + =T = Ny,
€ WN-1
which at € = 0 simplifies by Lemma 8, to
N —-1lwy_1 — Nw
14 JOn-1 = NON 0,

WN-1
and hence for sufficiently small ¢ > 0 the above derivative of the right hand side is strictly
greater than zero.

Therefore, there exist ¢ > 0 and € > ¢ such that

b (COFEY + N[L= PN [ 6,(c)f(v)dv + Sa(e, ) (N = Doy = Nww}

= (1= 6(1 — a(c, 8)) — 5%a(c,9)) 0.

Thus, using the definition of «a(c, )

(_C)F(C)N + N[l - F(f)]N fevh ¢U(C)f(v)dv + C(N_l)mmfj‘;*_ll_NﬁN
D > (1—6(1—ale,d)) — 62a(c,6)) > 0.

Hence, fixing ¢ and ¢, as 6 — 1, D — o0.

To show that our strategy is an equilibrium strategy for sufficiently high 4, it suffices to
check that no bidder has a profitable one-shot deviation after any history. After any history
in which the strategy prescribes competitive bidding forever after, the incentives are identical

to the incentives in the one-shot game. Thus bidding b¢(v, 0) is a best reply. After any history
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that places bidders in a non-exclusionary regime, it is a best response for all bidders with
values below ¢, except the default player, not to bid because their instantaneous payoff from
winning v is less than the reduction in their continuation payoff, a(c,d)dwy_1 = c. For the
default player it is a best response to bid zero if v < ¢, for conditional on bidding zero, his
continuation payoff is independent of bidding or not. The zero bid thus ensures that he gets
the current period’s gain. For all bidders with value v > ¢, it is a best response to bid b¢(v, ¢)
because v — ¢ is the net-benefit of winning the object. During an exclusionary regime, it is
a best response for all non-excluded players to bid b%_,(v,0) because in equilibrium their
continuation values are not affected by their bids. Clearly, for the excluded player it is a
best response not to submit a bid if v < ¢ %. For any ¢ such that D > 0, choose § such that
forall § > 8, v, <6 %. Hence, the excluded player has no incentive to deviate for sufficiently
high 4. O

In the remainder of the appendix, we establish some preliminary results and then prove
Proposition 9. To establish Proposition 9, we will make use of the fact that for large K,
K-efficiency implies a monotonicity condition on the set of strategies used by the N bidders:
Let (wh,...,w*) = {(0,€1), (€1,2€1),. .., (v" — e,v")}, where ¢, = v"/k for some positive
integer k. Let pup denote the (probability) measure induced by the distribution function F
and recall that F' has a positive density.

Definition 7 An allocation induced by bid functions b;(v;(t), h(t),0), i =1,..., N, is said to
be (€1, €)-monotonic in period t following history h(t), if there exists a collection of sets w =

(w!, ..., @) such that @' C W', the Lebesgue measure of each w' is at least €,(1 — €), and

such that for all v' € @' and all v'*' € @', one has b;(v', h(t), o) < bj(v'T h(t), o), Vi, J.

We will proceed by showing that K-efficiency for large K < 1 implies (€1, €3)-monotonicity
for small (e, €5) > (0,0), which will be used later to show that in equilibrium continuation

values do not vary substantially with one’s bid.

Lemma 10 For any €;,e5 > 0, there exists K < 1 such that any K-efficient allocation
induced by bid functions b;(v;(t),h(t),0), i=1,...,N, for K < K <1 is (€1, €3)-monotonic.

Proof: Consider the allocation induced by bid functions b;(v;(t), h(t),o), i =1,..., N. For
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any €, € > 0 and corresponding partition {w'}, define
o (¢) := inf {b[Prob{b;(vi(t), h(t),0) < blui(t) € w'} > ¢}

and
BU(¢) := sup {b|Pr0b{b,-(v,-(t), h(t),o) > blvi(t) € W'} > C}

as functions of ¢ € (0,1). For sufficiently large K, we must have
() > BHHQ) Vi £ §, VK € (K, 1).

Let j(i) € argmax;; #7'1(¢). Then o (¢) > pIWI=1((), and for every bidder, with the
possible exception of bidder i, there is a set of valuations in w'~' where he bids at or below
BI@4=1(¢) and that has at least probability (1 — ¢)pup(w'™).

Consider bidder i and for some other bidder i’ a set of valuations in w'~! where i’ bids at
or below #7()4=1(¢) and that has at least probability (1 — ¢)pup(w'™!). For most valuations
in that range, i must bid at or below 37=1(¢) as well in order not to violate K-efficiency
if K is sufficiently large. Therefore, for sufficiently large K, for every bidder there is a set of
valuations in w'~! that has at least probability (1 —¢)?ur(w'~!) and on which he bids below
B, Let € solve (1 —¢&) = (1 — ()2

Let j := j(i), and i € argmin, 4 a(¢). Repeating the foregoing argument for o instead
of 3, we conclude that for sufficiently large K each bidder with value in w' bids at or above
o' (¢) on a set with probability at least (1 — &)up(w')) and each bidder with value in w!™!
bids at or below 37-1(¢) on a set with probability at least (1 — &)up(w!™1)).

Let o/(¢) := a(¢) and B(¢) := /(). Then we have shown that for sufficiently large
K, for each bidder there exists a subset of w! with probability at least (1 — 2¢)up(w')) on
which that bidder bids in [a!(¢), 8/(¢)]. Repeatedly using the fact that for any measure y,
wWENF) = uE)+ uF) — pu(E UF), we infer that in each set w' there is a subset of
valuations @' C w! for which all bidders bid in [8'(¢), &!(¢)] and that has probability greater
than or equal to (1 —2n&)ur(w')). This will be true for any ¢ € (0, 1), for sufficiently large K.
Since F' has a positive density everywhere, Lebesgue measure and the probability measure
corresponding to F' are mutually absolutely continuous. Therefore, for any €5 > 0 we can

find K large enough such that ¢ (and thus &) is small enough to guarantee that the set

w! C w! has Lebesgue measure at least ¢ (1 — €3). O
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Let b;(-, h, o) denote bidder j’s bid function that is induced by o; in the period following
history h, and use G;(-, h, o) to denote the distribution of bids that is induced by b;(-, h, o).

Lemma 10 immediately implies the following corollary:

Corollary 4 If {b;(-, h,0™)};en is a sequence of collections of bid functions, indezed by K,
that induce K-efficient allocations following history h with K — 1, then for each j € N, the
sequence of distribution functions G;(b;(-, h,o™), h,o®) converges in measure (Lebesgue and

wr) to F(), i.e. for any e >0
i ({v:1G;(bi(w, b, o), h,0") = F(0)| > €}) = 0 as K — 1,

where p can denote both Lebesque measure and jip.

Proof of Proposition 9: Recall that (h, j) denotes the public history in which bidder j was
the last winner and won the object after history h. Let V;((h, j); o) denote i’s continuation
value following history (h, j) under strategy profile o.

Let p € A(N \ i) be a probability distribution on the set of bidders excluding bidder i
and define

ni(h, p;o) =6 (Vi((h,i);a)) - > p(j)%((h,j);a)) :

j EN\i
Define p(j, h,0,b;) as the probability that j will win the object in the period following
history h, given that all bidders other than 7 use the bid functions that are induced by their
component of the profile o, bidder 7 bids b; and bidder 7 does not win the object. Then

P(j,h,U, bi(ﬂa 7h70)) =

1 —G;(bi(0,h,0),h,0) /oo ;i jGi(b, b, 0) dG;(b, h, ).
b

1 —10L,4Gi(bi(D, h,0), h,0) Jb(5,h,0) 1 — G(b;(D, h,0), h,0)
Corollary 4 implies that for any €' > 0 we can find K < 1 such that for all K > K and for
any K-efficient bidding functions b;(-, h,0), i = 1,..., N, there exist a set V C [0,v"] with
measure (Lebesgue and juz) at least 1 — €' such that for all & € V N [0, 0" — €] :

1

p(]v h,O', b2(67h70)) o m

i jGy(b, b, 0)dG (b, h,0)| < €,
oy T Gilb 101G (b, )| < e
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and by the rule for the change of variables for Lebesgue integrals

) N 1 00
p(]7 h7 g, bz (U7 h7 0)) - (’Ij) /{; Hl;ﬁi,le(bl(va h> 0)7 hv O-)dF('U) < 61'

1— FN-1

Recall that if |f,| < ¢ € L' and f, — f in measure, then [ f = lim [ f,,. Thus, using
Corollary 4 again and the fact that II,4; ;G,(b, h, o) is bounded by an L' function, we may
infer that for any ¢! > 0 we can find K < 1, if necessary larger than the one chosen before,
such that for all K > K there exist a set V C [0,v"] with measure (Lebesgue and pp) at
least 1 — ¢! such that for all 5 € V N[0, v" — €'] :

1

‘p(ja ha g, bl('aa h7 U)) - m /ﬁoo FN72(’U)dF(’U) < 61,

which finally implies that

1
N -1

1

\p(j, h, o, by(5, b, o)) — \ <e

on V N1[0,v" — €.
Let o/, 0" € VN [e2 vt — €] for € > 0 with v/ < v". Consider any b that satisfies
bi(v', h,0) < b < b(v", h,o). The foregoing argument shows that we can choose v’ and v”

arbitrarily close to each other provided we choose K sufficiently large. Note that

1-— Hl;ﬁiGl(bi(’U”, h,O), h, 0) S 1-— Hl;ﬁiGl(g, h, U) S 1-— Hl¢iGl(bi(U,, h, 0), ]’L,O’)

and
/ oy TG0, 1, 0)G (0, 0) < || Ty Gil, by 0)dGy (b, o)
< O(O g, Galb h,0)dG, (., ).
bi(v" ,h,o

Therefore, for any ¢ > 0 we can choose €' € (0, %) and K sufficiently large such that

o, B) — | < ¢

N -1
for all b € [b;(v, h,0),b;(T, h,0)] for some v € VN [0,€2) and 7€ V N (v — €2, 0"].
Let B(v,v) := [b;i(u, h,0),b;(T, h,o)] and define

i = inf i ha bi7h7 )
i biean(M)n( p(bi, h,0),0)
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and

mmax = Ssup U@(hq p(bza h7 0)7 0)‘
bieB(y75)

Then, for any € > 0, and for sufficiently large K, we have

max min 3
;i

—n 0 <€

By Lemma 10 for any ¢; > 0 and €, > 0 we can choose K sufficiently large such that the

allocation is (€}, €z)-monotonic. Let €! > 6¢; such that the set [v" — €2 — !, v" — ¢?] contains

at least five consecutive elements @', w!t!, ..., @'t of w.
Let v! € w!, and v'*2 € w!*2N V. For every € > 0 we can choose K < 1 sufficiently large
such that

vl it < b (v o) + €0

This can be seen as follows: Suppose instead that that there is ¢® > 0 such that for all
all K : vl + pPin > b (02 h,0) + €. Use b(_12 to denote the highest bid, excluding ¢’s
bid, and consider the two mutually exclusive and exhaustive events b(,lz) < b;(v', h,o) and
b(_IZ) > b;(v!, h, ). In the former case bidder 7 with valuation v! suffers no loss from deviating
to the bid b;(v'*2, h, o). In the latter case the expected change in payoffs from deviating is

bounded from below by

Prob (b(_lz) < b (02, b, o) b > by(0!, b, 0)) [vl + i — (0!, h,a)} —

(1 — Prob (b(_lz) < b(0"*2, b, o) |0 > bi(!, h,a))) €.

Note that Prob (b(_ll) < b;(v"*2, h, a)|b(_12 > b;(v!, h, 0)) is bounded from below by the strictly
positive probability of w!*!, that by assumption [vl + pmin — b (v!2 b, O')] is bounded from
below by € > 0 and that by choosing K sufficiently large, we can render € as close to zero
as desired. This is in contradiction to o being an equilibrium.

For any €% > 0 we also have

bi(v'2 h, o) < €

provided we choose K large enough. To see this, note that the probability that the highest

+3 is bounded away from zero

valuation is in w'** while the second highest valuation is in @
for sufficiently high K. Since in that case the price paid exceeds b;(v'*2, h, o), the expected

price would be bounded away from zero if the condition were not met.
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Combining what we have learned we get,
Nt < € 4 €8 — ol
which implies that

< 4 E e+ S < " EFE L 4 S,

since v! € (v —€* — €2, v — €%]. Therefore, for any v; € [¢2, v" — (2 + € + €' + ¢ +¢5)] bidder i
strictly prefers not to submit a bid, which for sufficiently small ¢/’s contradicts K-efficiency

for sufficiently large K. O
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