SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(externe Quelle)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://doi.org/10.17645/mac.8487

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Data-Campaigning on Facebook: Do Metrics of User Engagement Drive French Political Parties' Publications?

[Zeitschriftenartikel]

Figeac, Julien
Neihouser, Marie
Le Coz, Ferdinand

Abstract

Research on data-driven campaigning has mostly focused on the strategies of central campaign teams. However, there is a lack of evidence explaining how parties and supporters use data-driven campaigning techniques to organise their social media campaigning. Do user engagement metrics influence the c... mehr

Research on data-driven campaigning has mostly focused on the strategies of central campaign teams. However, there is a lack of evidence explaining how parties and supporters use data-driven campaigning techniques to organise their social media campaigning. Do user engagement metrics influence the choice of campaign themes by encouraging political parties to concentrate their communication on issues that are most liked, commented on, and shared? Our study focuses on the use of Facebook by French political parties and their supporters during the 2022 presidential election campaign. We conducted a supervised content analysis based on machine learning to examine their Facebook posts (n = 17,060). Our results show that the issues prioritized by parties on Facebook may be different from those that are most prominent in their broader communications. In most cases, however, these themes are not chosen based on user engagement, even for parties that claim to have developed their base through digital channels. Instead, the choice of themes seems influenced by more traditional campaign strategies, such as the desire to capture the electorate of their closest rival. In our conclusion, we discuss the implications of these findings for the adoption of data-driven campaigning in digital election communication across Europe.... weniger

Thesaurusschlagwörter
politische Kommunikation; Soziale Medien; politisches Programm; Wahlkampf; Präsidentschaftswahl; Frankreich; Facebook

Klassifikation
politische Willensbildung, politische Soziologie, politische Kultur
interaktive, elektronische Medien
Medieninhalte, Aussagenforschung

Freie Schlagwörter
data-driven campaigning; issue salience; supervised learning; user engagement

Sprache Dokument
Englisch

Publikationsjahr
2024

Zeitschriftentitel
Media and Communication, 12 (2024)

Heftthema
Data-Driven Campaigning in a Comparative Context: Toward a 4th Era of Political Communication?

ISSN
2183-2439

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.