SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(external source)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://doi.org/10.18148/srm/2016.v10i2.6213

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Semi-automated categorization of open-ended questions

[journal article]

Schonlau, Matthias
Couper, Mick P.

Abstract

"Text data from open-ended questions in surveys are difficult to analyze and are frequently ignored. Yet open-ended questions are important because they do not constrain respondents' answer choices. Where open-ended questions are necessary, sometimes multiple human coders hand-code answers into one ... view more

"Text data from open-ended questions in surveys are difficult to analyze and are frequently ignored. Yet open-ended questions are important because they do not constrain respondents' answer choices. Where open-ended questions are necessary, sometimes multiple human coders hand-code answers into one of several categories. At the same time, computer scientists have made impressive advances in text mining that may allow automation of such coding. Automated algorithms do not achieve an overall accuracy high enough to entirely replace humans. We categorize open-ended questions soliciting narrative responses using text mining for easy-to-categorize answers and humans for the remainder using expected accuracies to guide the choice of the threshold delineating between 'easy' and 'hard'. Employing multinomial boosting avoids the common practice of converting machine learning 'confidence scores' into pseudo-probabilities. This approach is illustrated with examples from open-ended questions related to respondents’ advice to a patient in a hypothetical dilemma, a follow-up probe related to respondents' perception of disclosure/privacy risk, and from a question on reasons for quitting smoking from a follow-up survey from the Ontario Smoker's Helpline. Targeting 80% combined accuracy, we found that 54%-80% of the data could be categorized automatically in research surveys." (author's abstract)... view less

Keywords
data capture; qualitative method; questionnaire; coding; automation; data quality; survey research

Classification
Methods and Techniques of Data Collection and Data Analysis, Statistical Methods, Computer Methods

Method
basic research; development of methods

Free Keywords
multinomial boosting; open-ended questions; text mining; uncertainty sampling; gradient boosting

Document language
English

Publication Year
2016

Page/Pages
p. 143-152

Journal
Survey Research Methods, 10 (2016) 2

ISSN
1864-3361

Status
Published Version; peer reviewed

Licence
Deposit Licence - No Redistribution, No Modifications


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.