SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(external source)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://doi.org/10.5585/iji.v1i1.4

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

How to use Big Data technologies to optimize operations in Upstream Petroleum Industry

[journal article]

Baaziz, Abdelkader
Quoniam, Luc

Abstract

"Big Data is the oil of the new economy" is the most famous citation during the three last years. It has even been adopted by the World Economic Forum in 2011. In fact, Big Data is like crude! It's valuable, but if unrefined it cannot be used. It must be broken down, analyzed for it to have value. B... view more

"Big Data is the oil of the new economy" is the most famous citation during the three last years. It has even been adopted by the World Economic Forum in 2011. In fact, Big Data is like crude! It's valuable, but if unrefined it cannot be used. It must be broken down, analyzed for it to have value. But what about Big Data generated by the Petroleum Industry and particularly its upstream segment? Upstream is no stranger to Big Data. Understanding and leveraging data in the upstream segment enables firms to remain competitive throughout planning, exploration, delineation, and field development. Oil & Gas Companies conduct advanced geophysics modeling and simulation to support operations where 2D, 3D & 4D Seismic generate significant data during exploration phases. They closely monitor the performance of their operational assets. To do this, they use tens of thousands of data-collecting sensors in subsurface wells and surface facilities to provide continuous and real-time monitoring of assets and environmental conditions. Unfortunately, this information comes in various and increasingly complex forms, making it a challenge to collect, interpret, and leverage the disparate data. As an example, Chevron's internal IT traffic alone exceeds 1.5 terabytes a day. Big Data technologies integrate common and disparate data sets to deliver the right information at the appropriate time to the correct decision-maker. These capabilities help firms act on large volumes of data, transforming decision-making from reactive to proactive and optimizing all phases of exploration, development and production. Furthermore, Big Data offers multiple opportunities to ensure safer, more responsible operations. Another invaluable effect of that would be shared learning. The aim of this paper is to explain how to use Big Data technologies to optimize operations. How can Big Data help experts to decision-making leading the desired outcomes?... view less

Keywords
basic industry; crude oil; natural gas; knowledge management; data capture; data; utilization; monitoring; competitiveness

Classification
Sociology of Science, Sociology of Technology, Research on Science and Technology
Information Management, Information Processes, Information Economics
Economic Sectors

Free Keywords
Big Data; analytics; upstream petroleum industry; business intelligence; decision-making under uncertainty

Document language
English

Publication Year
2013

Page/Pages
p. 19-25

Journal
International Journal of Innovation, 1 (2013) 1

ISSN
2318-9975

Status
Published Version; peer reviewed

Licence
Creative Commons - Attribution-ShareAlike


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.