Export für Ihre Literaturverwaltung

Übernahme per Copy & Paste
Bibtex-Export
Endnote-Export

       

Weiterempfehlen

Bookmark and Share


Robust small area estimation and oversampling in the estimation of poverty indicators

Stabile Schätzung von Kleinflächen und Oversampling bei der Schätzung von Armutsindikatoren
[Zeitschriftenartikel]

Giusti, Caterina; Marchetti, Stefano; Pratesi, Monica; Salvati, Nicola

fulltextDownloadVolltext herunterladen

(externe Quelle)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):http://dx.doi.org/10.18148/srm/2012.v6i3.5131

Weitere Angaben:
Abstract "There has been rising interest in research on poverty mapping over the last decade, with the European Union proposing a core of statistical indicators on poverty commonly known as Laeken Indicators. They include the incidence and the intensity of poverty for a set of domains (e.g. young people, unemployed people). The EU-SILC (European Union - Statistics on Income and Living Conditions) survey represents the most important source of information to estimate these poverty indicators at national or regional level (NUTS 1-2 level). However, local policy makers also require statistics on poverty and living conditions at lower geographical/domain levels, but estimating poverty indicators directly from EU-SILC for these domains often leads to inaccurate estimates. To overcome this problem there are two main strategies: i. increasing the sample size of EU-SILC so that direct estimates become reliable and ii. resort to small area estimation techniques. In this paper the authors compare these two alternatives: with the availability of an oversampling of the EU-SILC survey for the province of Pisa, obtained as a side result of the SAMPLE project (Small Area Methods for Poverty and Living Conditions, http://www.sample-project.eu/ ), they can compute reliable direct estimates that can be compared to small area estimates computed under the M-quantile approach. Results show that the M-quantile small area estimates are comparable in terms of efficiency and precision to direct estimates using oversample data. Moreover, considering the oversample estimates as a benchmark, they show how direct estimates computed without the oversample have larger errors as well as larger estimated mean squared errors than corresponding M-quantile estimates." (author's abstract)
Thesaurusschlagwörter method; measurement; poverty; indicator; indicator research; construction of indicators; data; data organization; data quality
Klassifikation Erhebungstechniken und Analysetechniken der Sozialwissenschaften; soziale Probleme
Sprache Dokument Englisch
Publikationsjahr 2012
Seitenangabe S. 155-163
Zeitschriftentitel Survey Research Methods, 6 (2012) 3
Heftthema Papers from ITACOSM11
ISSN 1864-3361
Status Veröffentlichungsversion; begutachtet (peer reviewed)
Lizenz Deposit Licence - Keine Weiterverbreitung, keine Bearbeitung
top