SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(external source)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://doi.org/10.1186/2190-8532-2-4

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Predicting sentencing outcomes with centrality measures

[journal article]

Masías, Víctor Hugo
Morselli, Carlo
Crespo, Fernando
Laengle, Sigifredo

Abstract

Despite their importance for stakeholders in the criminal justice system, few methods have been developed for determining which criminal behavior variables will produce accurate sentence predictions. Some approaches found in the literature resort to techniques based on indirect variables, but not on... view more

Despite their importance for stakeholders in the criminal justice system, few methods have been developed for determining which criminal behavior variables will produce accurate sentence predictions. Some approaches found in the literature resort to techniques based on indirect variables, but not on the social network behavior with exception of the work of Baker and Faulkner [ASR 58: 837–860, 1993]. Using information on the Caviar Network narcotics trafficking group as a real-world case, we attempt to explain sentencing outcomes employing the social network indicators. Specifically, we report the ability of centrality measures to predict a) the verdict (innocent or guilty) and b) the sentence length in years. We show that while the set of indicators described by Baker and Faulkner yields good predictions, introduction of the additional centrality measures generates better predictions. Some ideas for orienting future research on further improvements to sentencing outcome prediction are discussed.... view less


A pesar de la importancia para diferentes actores involucrados en el sistema judicial, se han desarrollados pocos métodos para determinar las variables del comportamiento organizado que permiten predecir las sentencias judiciales de redes criminales. Algunas aproximaciones encontradas en la literatu... view more

A pesar de la importancia para diferentes actores involucrados en el sistema judicial, se han desarrollados pocos métodos para determinar las variables del comportamiento organizado que permiten predecir las sentencias judiciales de redes criminales. Algunas aproximaciones encontradas en la literatura especializada usa variables indirectas al comportamiento organizado y no en el comportamiento en red de estas organizaciones. Nosotros usamos información real sobre un caso de red criminal real que operó en Montreal (Canadá) y analizamos la comunicación entre los miembros de la red para determinar si su comportamiento comunicacional permite predecir el veredicto así como los años de sentencia. Encontramos que los modelos de regresión obtenidos y las variables de centralidad nodal utilizadas por nosotros logra un mejor capacidad predictiva. Finalmente, se discuten algunas ideas dirigidas a mejorar la predicción de sentencias judiciales desde las medidas de redes sociales.... view less

Keywords
criminology; drug-related crime; social network; prosecution; judiciary; network analysis

Classification
Criminal Sociology, Sociology of Law
Judiciary

Free Keywords
Criminology; Sentencing outcomes; Social networks

Document language
English

Publication Year
2013

Journal
Security Informatics, 2 (2013)

Issue topic
Computational Criminology

ISSN
2190-8532

Status
Published Version; peer reviewed

Licence
Free Digital Peer Publishing Licence


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.