SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(1.480Mb)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-239889

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Forecasting Business and Consumer Surveys Indicators. A Time Series Models Competition

[journal article]

Moreno, Rosina
Clar, Miquel
Duque, Juan Carlos

Abstract

The objective of this paper is to compare different time series methods for the short-run forecasting of Business and Consumer Survey Indicators. We consider all available data taken from the Business and Consumer Survey Indicators for the Euro area between 1985 and 2002. The main results of the for... view more

The objective of this paper is to compare different time series methods for the short-run forecasting of Business and Consumer Survey Indicators. We consider all available data taken from the Business and Consumer Survey Indicators for the Euro area between 1985 and 2002. The main results of the forecast competition are offered not only for raw data but we also consider the effects of seasonality and removing outliers on forecast accuracy. In most cases the univariate autoregressions were not outperformed by the other methods. As for the effect of seasonal adjustment methods and the use of data from which outliers have been removed, we obtain that the use of raw data has little effect on forecast accuracy. The forecasting performance of qualitative indicators is important since enlarging the observed time series of these indicators with forecast intervals may help in interpreting and assessing the implications of the current situation and can be used as an input in quantitative forecast models.... view less

Document language
English

Publication Year
2008

Page/Pages
p. 2565-2580

Journal
Applied Economics, 39 (2008) 20

DOI
https://doi.org/10.1080/00036840600690272

Status
Postprint; peer reviewed

Licence
PEER Licence Agreement (applicable only to documents from PEER project)


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.