Export für Ihre Literaturverwaltung

Übernahme per Copy & Paste
Bibtex-Export
Endnote-Export

       

Weiterempfehlen

Bookmark and Share


On the statistical identification of DSGE models

[Zeitschriftenartikel]

Consolo, Agostino; Favero, Carlo A.; Paccagnini, Alessia

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):http://nbn-resolving.de/urn:nbn:de:0168-ssoar-233513

Weitere Angaben:
Abstract Dynamic Stochastic General Equilibrium (DSGE) models are now considered attractive by the profession not only from the theoretical perspective but also from an empirical standpoint. As a consequence of this development, methods for diagnosing the fit of these models are being proposed and implemented. In this article we illustrate how the concept of statistical identification, that was introduced and used by Spanos [Spanos, Aris, 1990. The simultaneous-equations model revisited: Statistical adequacy and identification. Journal of Econometrics 44, 87–105] to criticize traditional evaluation methods of Cowles Commission models, could be relevant for DSGE models. We conclude that the recently proposed model evaluation method, based on the DSGE−VAR(λ), might not satisfy the condition for statistical identification. However, our application also shows that the adoption of a FAVAR as a statistically identified benchmark leaves unaltered the support of the data for the DSGE model and that a DSGE-FAVAR can be an optimal forecasting model.
Klassifikation Wirtschaftsstatistik, Ökonometrie, Wirtschaftsinformatik
Freie Schlagwörter C11; C52; Bayesian analysis; Dynamic stochastic general equilibrium model; Model evaluation; Statistical identification; Vector autoregression; Factor-augmented vector autoregression
Sprache Dokument Englisch
Publikationsjahr 2009
Seitenangabe S. 99-115
Zeitschriftentitel Journal of Econometrics, 150 (2009) 1
DOI http://dx.doi.org/10.1016/j.jeconom.2009.02.012
Status Postprint; begutachtet (peer reviewed)
Lizenz PEER Licence Agreement (applicable only to documents from PEER project)
top