SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(357.4Kb)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-215860

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Molecular genetics of attention-deficit/ hyperactivity disorder: an overview

[journal article]

Banaschewski, Tobias
Becker, Katja
Scherag, Susann
Franke, Barbara
Coghill, David

Abstract

As heritability is high in attention-deficit/ hyperactivity disorder (ADHD), genetic factors must play a significant role in the development and course of this disorder. In recent years a large number of studies on different candidate genes for ADHD have been published, most have focused on genes in... view more

As heritability is high in attention-deficit/ hyperactivity disorder (ADHD), genetic factors must play a significant role in the development and course of this disorder. In recent years a large number of studies on different candidate genes for ADHD have been published, most have focused on genes involved in the dopaminergic neurotransmission system, such as DRD4, DRD5, DAT1/SLC6A3, DBH, DDC. Genes associated with the noradrenergic (such as NET1/SLC6A2, ADRA2A, ADRA2C) and serotonergic systems (such as 5-HTT/SLC6A4, HTR1B, HTR2A, TPH2) have also received considerable interest. Additional candidate genes related to neurotransmission and neuronal plasticity that have been studied less intensively include SNAP25, CHRNA4, NMDA, BDNF, NGF, NTF3, NTF4/5, GDNF. This review article provides an overview of these candidate gene studies, and summarizes findings from recently published genome-wide association studies (GWAS). GWAS is a relatively new tool that enables the identification of new ADHD genes in a hypothesis-free manner. Although these latter studies could be improved and need to be replicated they are starting to implicate processes like neuronal migration and cell adhesion and cell division as potentially important in the aetiology of ADHD and have suggested several new directions for future ADHD genetics studies.... view less

Classification
Psychological Disorders, Mental Health Treatment and Prevention

Free Keywords
Genetics; ADHD; Candidate gene studies; GWAS; Aetiology

Document language
English

Publication Year
2010

Page/Pages
p. 237-257

Journal
European Child & Adolescent Psychiatry, 19 (2010) 3

DOI
https://doi.org/10.1007/s00787-010-0090-z

Status
Postprint; peer reviewed

Licence
PEER Licence Agreement (applicable only to documents from PEER project)


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.