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Abstract

We propose an estimator of the conditional distribution ofXtjXt�1; Xt�2; : : : ; and
the corresponding regression function E(XtjXt�1; Xt�2; : : :); where the conditioning
set is of in�nite order. We establish consistency of our estimator under stationarity

and ergodicity conditions plus a mild smoothness condition.
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1 Introduction

There are now many papers on nonparametric estimation in time series. Roussas (1967),

Rosenblatt (1970,1971) and Pham Dinh Tuan (1981) gave CLT�s for kernel density and/or

regression function estimators under the Markov hypothesis. Robinson (1983) relaxed the

Markov assumption. He studied the case where a sample fXt; t = 1; : : : ; ng is observed
where (Xt)t2Z is a real-valued stationary and strong mixing stochastic process. The objects

of interest were the marginal and conditional density functions as well as the regression

function E(YtjZt); where Yt and Zt are (di¤erent) �nite dimensional vectors containing
lags of Xt: He provided su¢ cient conditions for the pointwise consistency and asymptotic

normality of the kernel estimators under weak dependence. As is by now well known, he

found that the rate of convergence and the asymptotic distribution were the same as if the

variable Xt was i.i.d. with the same marginal distribution. Robinson (1986) considered

also the case of regression where e¤ectively Xt is a vector and Yt; Zt are functions of dif-

ferent components of Xt. These results have recently been generalized to local polynomial

estimators in Masry and Fan (1997) under more or less the same regularity conditions. Lu

and Linton (2007) have extended these results to near epoch dependent functions of mix-

ing processes. Collomb (1985) and Masry (1996) have studied uniform strong convergence.

When the assumption of stationarity is abandoned one can �nd quite di¤erent results, for

example those obtained by Phillips and Park (1998) and Karlsen and Tjøstheim (2001) for

unit root or null recurrent processes (see also Bandi, 2004, for near-integrated processes)

for which the rates of convergence are slower and limiting distributions are non-normal

(see also Sancetta, 2007b, for modi�ed estimators that lead to standard inference in some

of these situations). As remarked in Gyor�et. al. (1998), while many mixing/dependence

conditions seem very plausible, there is virtually no literature on inference for mixing

parameters estimated from data.

Hence, following a second strand of literature concerned with consistency only (e.g.

Ornstein, 1978, Algoet, 1992, Morvai et. al., 1996) we maintain the hypothesis that the

data are stationary, but only require ergodicity. We generalize the object of interest to

allow for in�nitely many conditioning variables. In particular, we study the estimation of

the in�nite order regression

E(XtjFt�1); (1)
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where Ft�1 = � (Xs; s < t) is the sigma algebra generated by the sequence (Xs)s<t : Using

the previous notation, we could have Xt = (Yt; Zt) so that both the regression and autore-

gression problems are covered. This object is of interest for the following reasons. First,

many parametric time series models involve dependence on the in�nite past. For example,

the class of linear processes Xt =
P1

j=1 cj(�)Xt�j+ "t; where cj(�) are coe¢ cients depend-

ing on unknown parameters such that
P1

j=1 c
2
j(�) <1; while "t is i.i.d. This class contains

the stationary and invertible ARMA processes that are widely used in practice. If Xt is a

GARCH(1,1) process, then X2
t =

P1
j=1 cj(�)X

2
t�j+ "t; although in that case "t is not i.i.d.

In the Gaussian linear process case the univariate conditional expectations E(XtjXt�j)

are also linear and can be used to identify the process. But in the non-Gaussian case this

is no longer true and the univariate conditional expectations can be nonlinear and quite

di¤erent from E(XtjFt�1); Tong (1990), thereby making identi�cation of the correct model
from just these univariate quantities impossible. Second, there are some semiparametric

time series models that are di¢ cult to estimate without some preliminary estimator of

E(XtjFt�1): To be speci�c, Linton and Perron (2003) studied the risk premium model

Xt = �(�2t ) + "t�t; t = 1; 2; : : : ; n; (2)

where "t are i.i.d. with zero mean and variance one, �2t is a GARCH or EGARCH volat-

ility process, while �(�) is of unknown functional form. The restriction that E(XtjFt�1),
where Ft�1 = � (Xs; s < t), only depends on the past through �2t is quite severe but is

a consequence of asset pricing models such as for example Backus and Gregory (1992)

and Gennotte and Marsh (1988). To estimate the function �(:) and the parameters of �2t
they proposed an iterative procedure whose properties have not been established as yet.

If one can obtain consistent estimates of �t = E(XtjFt�1); one can use these as starting
values in that algorithm and straightforward arguments can be used to show consistency

of the resulting estimates of the function �(:) and the parameters of �2t : See also Pagan

and Hong (1991) and Pagan and Ullah (1988). A third reason for estimating the unres-

tricted regression E(XtjFt�1) is for speci�cation testing of nonparametric, semiparametric
or parametric models. For example, the martingale hypothesis is that E(XtjFt�1) = 0 a.s.
The closest work to ours is Morvai et. al. (1996). This paper proposes what amounts

to sequential histogram versions of our estimators. Their primary construction is for the

2
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case where the series is binary: they average over the random number of cases where an

increasing �nite sequence is reproduced. They then generalize to allow for continuous

distributions by "quantizing" the sample space, covering it by a partition that re�nes

with sample size. Their estimator involves some implicit temporal downweighting but it

is not very transparent because of the sequential nature of its construction. In practice,

it is likely to require much greater sample sizes than ours for reasonable performance.

Furthermore, it is hard to frame the issues of "quantization" selection. They establish

strong consistency of their c.d.f. estimator (in the weak topology of distributions) and

regression estimator (under an additional condition of boundedness). Morvai et. al. (1997)

propose a modi�cation of this estimator that e¤ectively decouples the quantization from

the length of history considered. They show weak consistency results.

Our estimator is relatively simple to implement, and it is intuitively connected with

the standard kernel regression estimator, and is very explicit in terms of the spatial and

temporal downweighting involved in its construction. Our results provide conditions for

uniform strong consistency (existing results deal with the nonuniform case) and are ap-

plicable to data in arbitrary metric spaces endowed with a bounded metric and with a

partial order (�). This is of interest when we deal with particular data sequences like
functional data (e.g. Ferraty and Vieu, 2007, and Masry, 2005, for results under mixing

conditions). An example of such data is when we observe sequences of interest rates term

structures and we wish to predict the whole yield curve.

Our theory requires tuning of two parameters and we provide suggestions on how to

choose them. One extra condition that we need to impose is some smoothness of the

conditional distribution function. This is the price to be paid for using an estimator as

simple as the one proposed here and that allows for uniform strong consistency.

In the simplest case, the function E(XtjFt�1) is a function from R1 to R, denote it by
f . When Xt is weakly dependent, we can expect the in�uence of lagged values to decay

in terms of the modulus of uniform continuity of f ,

jf (xi; i � 1)� f (zi; i � 1)j �
X
i�1

ai jxi � zijb ;

where j�j is a suitable norm, b > 0 and ai ! 0 as i!1. For geometrically mixing Xt we

expect that ai � c�i for some � 2 (0; 1) and positive constant c. We do not impose such
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speci�c assumptions. Here, we shall only assume that (Xt)t2Z is an ergodic and stationary

sequence. Additional conditions related to existence of moments and mild smoothness

conditions on the conditional distribution function will also be imposed.

2 The Estimator

We assume that we have a backward expanding sample X�1
�n of n observations and we

are interested in constructing an estimator of E (X0jF�1). By stationarity and the shift
operator, this is equivalent to �nding an estimator of E (XtjFt�1) using X t�1

t�n. See Gyor�

et al. (2002, Ch.27) for remarks about estimation using a backward expanding sample

and the more challenging estimation based on the forward expanding sample Xn
1 .

Our estimator is a locally weighted average, like classical nonparametric regression

estimators. The only di¤erence here is the way we must de�ne local, which must take

account of the size of the conditioning set. We require some additional details. We let Xt

take values in some metric space (X ; d). The product space X1 =
N1

s=1X is equipped

with the metric d� (x; y) =
P1

s=1 �
sd (xs; ys), x; y 2 X1, for some � 2 (0; 1). With

abuse of notation, the same d� is also used on a �nite product space: for x; y 2 X n,

d� (x; y) =
Pn

s=1 �
sd (xs; ys). De�ne the following set of d� radius h around x�1�n as

Bh
�
x�1�n
�
:=

(
y 2 X1 :

nX
s=1

�sd (x�s; ys) � h

)
: (3)

The set Bh (x) includes the set ~Bh=�s(xs) := fy; x 2 X1 : d(ys; xs) � h=�s; yt = xt; t 6= sg ;
which expands as s!1 for �xed h: This means that the neighborhood system has a tilted

geometry where distant lags (large s) count much less in the determination of whether a

vector is close to another one. Then, for x 2 X , we propose the following estimator

Pn
�
xjBh

�
X�1
�n
��
:=

P(n�m)
s=1 fX�s � xgK

�
d�

�
X�1
�(n�s); X

�(1+s)
�n

�
=h
�

P(n�m)
s=1 K

�
d�

�
X�1
�(n�s); X

�(1+s)
�n

�
=h
� ; (4)

where the inequality is meant elementwise if required (e.g. X � Rv, v > 1), and K is a

kernel that has support [0; 1]. Throughout the paper, for any set A, the indicator function
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of the set is written as the set itself: IA = A. The parameter m � 1 is �xed and chosen
such that enough observations are available for reasonable conditional estimation. This

can reduce the bias in �nite samples. Asymptotically, the value of m is irrelevant, hence,

for simplicity we just set it equal to one with no further discussion. The parameter h

de�nes the size of the local conditioning sets and is such that h := hn ! 0 as n ! 1.
Finally, � 2 (0; 1) determines the shape and allocation of the local conditioning sets. These
quantities will be implicitly speci�ed in our regularity conditions below.

We de�ne the corresponding estimator of the conditional expectation of some function

g (X0),

Pn
�
g (X0) jBh

�
X�1
�n
��
:=

Z
X
g (x)Pn

�
dxjBh

�
X�1
�n
��

(5)

=

Pn�1
s=1 g (X�s)K

�
d�

�
X�1
�(n�s); X

�(1+s)
�n

�
=h
�

Pn�1
s=1 K

�
d�

�
X�1
�(n�s); X

�(1+s)
�n

�
=h
� :

This can be seen as a form of the Nadaraya-Watson kernel regression estimator with

covariates of increasing dimension, but where the in�uence of temporally remote covariates

is small.

3 Main Results

The goal of this section is to state general high level conditions that ensure consistency in

a general framework. For simplicity we shall restrict our attention to the uniform kernel

case where K(u) = fjuj � 1g. For the estimator in (4) we shall show that

sup
x2X

��Pn �xjBh �X�1
�n
��
� Pr (X0 � xjF�1)

��! 0;

in probability (a.s.). For the estimator in (5), in the special case g (x) = xp, p 2 N, the
previous display together with an additional regularity condition implies

Pn
�
Xp
0 jBh

�
X�1
�n
��
:=

Z
X
xpPn

�
dxjBh

�
X�1
�n
��
! E (Xp

0 jF�1) ;

in probability (a.s.).

5
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We formally state the conditions that imply consistency of the estimator.

Condition 1 (Xt)t2Z is a stationary and ergodic sequence of random variables with law

P and values in X endowed with a partial order �.

We impose smoothness on the joint distribution function.

Condition 2 The conditional probability Pr
�
X0 � �jX�1

�1 = x�1�1
�
is P a.s. continuous

in x�1�1 with respect to the topology generated by d�.

The next is the crucial condition for consistency.

Condition 3 For P-almost all x�1�n, choose hn ! 0 such that

lim
n!1

n�1X
s=1

n
d�

�
x�1�(n�s); X

�(1+s)
�n

�
� hn

o
=1 in probability (a:s:):

In Section 4.1 we provide a simple condition on the metric d that is su¢ cient for

Condition 3 to be non-vacuous. Hence, we have the following.

Theorem 1 Suppose that the family of sets ffs 2 X : s � xg ;x 2 Xg has �nite bracket-
ing number. Under Conditions 1, 2 and 3,

sup
x2X

��Pn �xjBh �X�1
�n
��
� Pr (X0 � xjF�1)

��! 0 in probability (a:s:):

If X � Rv, the left open intervals ffs 2 X : s � xg ;x 2 Xg have �nite bracketing
numbers for v bounded (van der Vaart and Wellner, 2000). We can use a uniform in-

tegrability condition to show a related uniform convergence result for classes of functions

which we denote by G.

Condition 4 G is a family of functions with envelope function G (x) = supg2G jg (x)j
such that

sup
1�i�n<1

E
h
G (X�i+1)

p j
n
d�

�
X�1
�(n�i+1); X

�i
�n

�
� hn

oi
<1; for some p > 1:

6
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Condition 4 makes sure that the terms in the summation de�ning (5) are uniformly

integrable. (Note that summation is over the Xi�s satisfying fd�(X�1
�(n�i+1); X

�i
�n) � hng).

We now state two corollaries to Theorem 1 that follow by use of Condition 4.

Corollary 1 Let G be the family of equicontinuous functions satisfying Condition 4.

Then, under Conditions 1, 2 and 3,

sup
g2G

����Z
X
g (x)Pn

�
dxjBh

�
X�1
�n
��
� E (g (X0) jF�1)

����! 0 in probability (a:s:):

For example, a family of functions is equicontinuous if it contains functions that are

Lipschitz under some metric or if it comprises of a �nite arbitrary collection of continuous

functions.

Remark 1 Clearly, when G comprises of the single function xp, p 2 N, which is continu-
ous, Corollary 1 implies consistency for conditional moment estimators, i.e. E (Xp

0 jF�1).

In some circumstances, we are interested in G whose elements are not necessarily

continuous. If we restrict attention to functions with domain in a Euclidean space X � Rv

(v a �nite integer), the elements in G can be replaced by functions of Hardy bounded

variation. We brie�y recall the de�nition before stating the result.

De�nition 1 A function g : Rv ! R is of Hardy bounded variation (BV) if it can be

written as g (x) = g1 (x)�g2 (x) where gj (j = 1; 2) are coordinatewise increasing functions,
�nite on any compact subset of X .

Note that for v = 1 all de�nitions of bounded variation are the same and they di¤er

for v > 1 (e.g. Clarkson and Adams, 1933). Hence, we have the following.

Corollary 2 Suppose that G is a class of BV functions satisfying Condition 4. Then,

under Conditions 1, 2 and 3,

sup
g2G

����Z
X
g (x)Pn

�
dxjBh

�
X�1
�n
��
� E (g (X0) jF�1)

����! 0 in probability (a:s:):

7
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Note that continuous functions are not necessarily BV function, e.g. g (x) = x sin (1=x)

for x > 0, and zero elsewhere, is continuous, but not of bounded variation. Basically,

functions of Hardy bounded variation are functions having a.e. the derivative Dvg, where
(Dvg) (x) = @vg (x) = (@x1 � � � @xv), x = (x1; : : : ; xv). We now turn to some further discus-
sion.

4 Discussion

4.1 Remarks on Condition 3

While we do not impose dependence conditions, veri�cation of Condition 3 is a major

di¢ culty, but it is exactly what is required for consistency. If Condition 3 holds, there

is no need to require the data sequence to be ergodic. Nevertheless, ergodicity appears

to be needed in order to verify Condition 3. Recall that Condition 3 relates to the way

the bandwidth needs to be chosen. Condition 1 does not seem to imply that there exists

a bandwidth for which Condition 3 holds. For stationary ergodic processes, recurrence

to some set is implied by the Poincare Recurrence Theorem (e.g. Theorem 6.4.1 in Gray

1998). In our case, the set is expanding and we cannot make direct use of this result.

However, under an additional mild technical condition we can show that Condition 1 is

su¢ cient to ensure that Condition 3 can be satis�ed.

Condition 5 The metric d is bounded, i.e. maxx;y2X d (x; y) � C, where C is a �nite

absolute constant.

This condition has minor practical consequences. Indeed we can easily turn any metric

d0 on X into a bounded one, e.g. d := d0= (1 + d0). Then, we have the following.

Lemma 1 Under Conditions 1 and 5, there is a sequence hn ! 0 such that, for P almost
all x�1�1,

lim
n!1

nX
s=1

n
d�

�
x�1�(n�s); X

�(1+s)
�n

�
� hn

o
=1 a:s:

In the proof of Lemma 1, it is shown that

Ba
h

�
x�1�I
�
:=

�
d
�
x�i; X�(s+i)

�
� ai

h

�i
; i = 1; : : : ; I

�
�
n
d�

�
x�1�(n�s); X

�(1�s)
�n

�
� h

o
8
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for any sequence a := (ai)i>0 such that ai � ai+1,
P

i>0 ai � 1 and

I = inf
�
i 2 N :

�
aih=�

i
�
� 1
	
:

Clearly, I depends on h and a. Hence, to check Condition 3 we can check that

n�IX
s=1

n
X
�(s+1)
�(s+I) 2 B

a
h

�
x�1�I
�o
!1 (6)

in probability (a.s.). Then, (6) is similar in spirit to standard conditions used to show

convergence of kernel regression estimators (e.g. Devroye, 1981, Theorem 4.1). It would

be conceptually useful to relate hn ! 0 directly to n. Suppose that for P almost all x�1�I ,

1

Rn

�����
nX
s=1

n
X
�(s+1)
�(s+I) 2 B

a
h

�
x�1�I
�o
�

nX
s=1

Pr
�
X
�(s+1)
�(s+I) 2 B

a
h

�
x�1�I
�������! 0 (7)

in probability (a.s.) for some sequence Rn = Rn (h) = o
�
nPr

�
X
�(1+1)
�(1+I) 2 Ba

h

�
x�1�I
���

. By

recurrence, the sequence Rn !1 only when I = o (n) implying (6), hence Condition (3).

To show (7) we would need regularity conditions on Pr
�
X
�(1+1)
�(1+I) 2 Ba

h

�
x�1�I
��
in order to

�nd its rate of decay as well as suitable mixing conditions (e.g. Rio, 2000, for a review).

Given that x�1�I expands as n ! 1 the resulting conditions on hn are very complex and

can be only stated as the solution of some nonlinear equation. Hence, for the sake of

simplicity (and generality) our results are presented under Condition 3 only without using

mixing conditions. Nevertheless, having established that Condition 3 is not void, it is

necessary to choose hn in some reasonable way. We discuss this issue next.

4.2 Remarks on Parameter Selection

Estimators (4) and (5) depend on parameters h ! 0 and � 2 (0; 1) and it is not obvious
a priori what are good choices of them. The weak conditions used here make the direct

application of classical cross-validation procedures di¢ cult and possibly dubious. In fact,

while cross-validation for time series has been considered in the literature (Härdle and

Vieu, 1992), the conditions required are too strict for the present context. In particular, the

proof for the consistency of crossvalidation in Härdle and Vieu (1992) relies on inequalities

9
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for moments of partial sums (i.e. Marcinkiewicz�Zygmund kind of inequalities; e.g. see

their Lemmata 3 and 4). Related moment inequalities are also used to derive the rate of

convergence of the nonparametric estimator to the true regression function (their Lemma

1). None of these results is applicable here. Hence, we are only left with the choice of

splitting the sample into an estimation sample and a validation sample over which to

evaluate the performance of di¤erent bandwidths. Clearly, the splitting could be done

recursively leading to a procedure that is amenable to standard analysis. For the sake of

clarity we outline the procedure. Let Pn (�jBh (Xn
1 )) be (4) where we have shifted forward

the segment of observations (X�1; : : : ; X�n) used to construct the estimator. Parametrize

the possible sequence of smoothing parameters, i.e. h = hn (�). Then, the problem

reduces to optimal choice of � := (�; �) with � 2 � � R2. The problem reduces to

forecast validation as done in the prequential statistical literature (Dawid, 1997, for a

review and references). The estimators discussed in this paper are functions of Pn (�j�) =
Pn (�jBh (Xn

1 )) (emphasizing dependence on �). We only discuss the regression problem

Pn (Xn+1j�) =
R
X xPn (dxj�). Let En be expectation conditioning on Fn. De�ne

�LN (�) =
NX
n=m

En
��X(n+1) � Pn

�
X(n+1)j�

���2
so that minimization of �LN (�) with respect to � delivers the forecast closest to the con-
ditional mean, say �(N). Since �LN (�) is unknown, we minimize the empirical criterion

LN (�) :=
NX
n=m

��X(n+1) � Pn
�
X(n+1)j�

���2
�̂(N) := argmin

�2�
LN (�) :

By the martingale structure of LN (�) � �LN (�), under regularity conditions, the empir-
ical optimal choice �̂(N) can be shown to be close to �(N) in probability, using standard

martingale arguments (e.g. Seillier-Moiseiwitsch and Dawid, 1993).

10
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5 Numerical Work

5.1 Simulation

In this section we discuss some Monte Carlo results whose aim is to verify the consistency

of a simple implementation of our procedure. We suppose that

Xt = 1 + "t � �"t�1;

where "t is either N(0; �2) or U [��=2; �=2]: When "t is Gaussian, the conditional expect-
ation E(XtjXt�1) = 1 � �(Xt�1 � 1)=(1 + �2) is linear, but when "t is uniform, it can be

nonlinear, see Tong (1990, pp 13-14). But in either case, E(XtjXt�1; : : :) = 1 � �"t�1 =

1� �(Xt�1� 1)=(1� �L) (L is the lag operator), which depends linearly on all past values
of X: This is assuming invertibility, i.e., j�j < 1:
We consider a �xed sample size n = 1000 and change the parameter � 2 f0:01; 0:1; 0:3; 1g:

The e¤ect of decreasing error scale should be similar to that of increasing sample size. We

consider � 2 f0:0; 0:33; 0:66; 1:0g:
We have used d(x; y) = jx�yj:We set � = b� =Pt(Xt�X)(Xt�1�X)=

P
t(Xt�1�X)2:

This seems to capture the idea that the more dependent Xt is, the larger we should

set �: We have tried other, �xed, values of � and found similar results. To choose the

value of h we have just taken h such that two hundred neighbors are included. Let

g = P
�
X0jBh

�
X�1
�n
��
and bg = Pn

�
X0jBh

�
X�1
�n
��
; and de�ne also the one dimensional

estimators bg1 = Pn �X0jBh
�
X�1
�1
��
:

In Table 1 below we report the bias Ebg�g and standard deviation std(bg) for the uniform
error case, where both moments are computed by averaging across the one thousand

simulations. The results improve as � decreases and as � decreases, but even when � = 1;

the estimator appears consistent. Note that bg1 is inconsistent in this case. The results for
the normal distribution are similar and not shown.

Table 1

11
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�=� 0:0 0:33 0:66 1:0

bias std bias std bias std bias std

1.0 0.0055 0.2732 0.0008 0.2884 -0.0081 0.3400 0.0060 0.4226

0.3 -0.0027 0.0823 -0.0008 0.0855 -0.0028 0.1005 -0.0038 0.1336

0.1 0.0001 0.0273 0.0012 0.0278 0.0002 0.0329 -0.0016 0.0439

0.01 0.0001 0.0027 0.0001 0.0028 0.0000 0.0034 0.0002 0.0043

The distribution of the estimator appears approximately normal according to Figure

1.

Figure 1. This shows the case where � = 1 and � = 1: Solid line is the standard normal pdf,

dashed line is the estimated density of bg� g (standardized to have mean zero and variance one).
In Table 2 we show the case where � = 0:3 for di¤erent sample sizes n 2 f100; 400; 1600; 6400g:
This shows that consistency (as n!1) is achieved but the convergence is rather slow.

Table 2

12
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n=� 0:0 0:33 0:66 1:0

bias std bias std bias std bias std

100 0.0000 0.0120 -0.0009 0.0173 0.0006 0.0370 0.0032 0.0697

400 -0.0001 0.0089 0.0000 0.0126 0.0000 0.0337 0.0001 0.0629

1600 0.0001 0.0061 0.0007 0.0107 0.0000 0.0326 -0.0065 0.0627

6400 0.0000 0.0043 0.0002 0.0094 -0.0004 0.0309 -0.0013 0.0615

5.2 Application

We apply our theory to the study of the risk return relationship. Modern asset pricing

theories imply restrictions on the time series properties of expected returns and condi-

tional variances of market aggregates. These restrictions are generally quite complicated,

depending on utility functions as well as on the driving process of the stochastic compon-

ents of the model. However, in an in�uential paper, Merton (1973) obtained very simple

restrictions albeit under somewhat drastic assumptions; he showed in the context of a

continuous time partial equilibrium model that

�t = E[(rmt � rft)jFt�1] = var[(rmt � rft)jFt�1] = �2t ; (8)

where rmt, rft are the returns on the market portfolio and risk-free asset respectively,

while Ft�1 is the market wide information available at time t � 1. The constant  is the
Arrow�Pratt measure of relative risk aversion. The linear functional form actually only

holds when �2t is constant; otherwise �t and �
2
t can be nonlinearly related, Gennotte and

Marsh (1993). Many previous tests of this restriction imposed parametric speci�cations

both in the dynamics of the volatility process �2t like GARCH-M and in the relationship

between risk and return like linearity. Pagan and Hong (1990) argue that the risk premium

�t and the conditional variance �
2
t are highly nonlinear functions of the past whose form

is not captured by standard parametric GARCH�M models. They estimate �t and �
2
t as

nonparametric regressions on a �nite dimensional information set �nding evidence of con-

siderable nonlinearity. They then estimated  from the regression rmt� rft = �2t + �t; by

least squares and instrumental variables methods with �2t substituted by the nonparamet-

ric estimate, �nding a negative but insigni�cant . Linton and Perron (2003) considered

13



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

the model (2), where �2t was a parametrically speci�ed CH process (with dependence on

the in�nite past) but �t = '(�2t ) for some function ' of unknown functional form. They

proposed an estimation algorithm but did not establish any statistical properties. They

found some evidence of a nonlinear relationship.

We suppose that both functions �t and �
2
t are unrestricted nonparametric functions of

the entire information set Ft�1 and they are related in a general way, that is, �t = '(�2t )

for some function ' of unknown functional form, or equivalently Xt = '(�2t ) + �t; where

�t is a martingale di¤erence sequence satisfying E(�tjFt�1) = 0: Below we show some

preliminary estimation of �t = E(XtjFt�1) and �2t = var(XtjFt�1) using S&P500 weekly
stock returns with n = 2475. We chose � = 0:99 and h such that k = 200 lags were

included in the weighting. We then estimated the function ' by a univariate local linear

kernel estimator with Silverman rule of thumb bandwidth:We show the estimated function

': The relationship is rather weak, i.e., the function ' is close to a constant.

Figure 2. Weekly returns on the S&P500 Index. On the horizontal axis is shown the square

root of the estimated conditional variance of returns given the in�nite past; on the vertical axis

is shown the estimated conditional mean of returns given the in�nite past. The dashed line is

the one-dimensional smooth of estimated mean on estimated standard deviation.

14
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6 Concluding Remarks

We have established the uniform strong consistency of the conditional distribution function

estimator under very weak conditions. It is reasonable to expect that the best rate we can

hope for over this very large class of functions is logarithmic in sample size. To formally

derive almost sure rates of convergence we would need to impose dependence conditions

that allow us to control the bias of the estimator. These dependence conditions would

also be needed to establish some exponential inequality to control the estimation error.

Exponential inequalities are commonly used in the application of the Borel-Cantelli lemma

to ensure that the convergence is almost sure. If rates of convergence were available, then

we could also hope to derive a central limit theorem for the estimator.

It is an open question whether one can achieve algebraic rates for some restricted class

of functions. For example, suppose that

f (xi; i � 1) =
1X
i=1

fi(xi); (9)

where the functions fi(:) are such that the sum is well de�ned, which implies some decay

in their respective magnitudes. This additive regression model has been well studied in the

case where it is known that fi(:) � 0 for all i > d for some �nite d. Stone (1985) showed

that the optimal rate for estimation of the components fi(:) and f(:) is the same as for

one-dimensional nonparametric regression. Estimation algorithms have been proposed in

Linton and Nielsen (1995) and Mammen, Linton, and Nielsen (1999). Linton and Mammen

(2005) have considered the case where d =1 but fi(xi) =  i(�)m(xi) for some parametric

quantities  i(�) that decline suitably fast. It may be possible to adapt the algorithm of

Mammen, Linton, and Nielsen (1999) to the general model (9) by allowing the number of

dimensions iterated over to increase slowly with sample size but such analysis is beyond

the scope of this paper.

A Appendix: Proof of Main Results

At �rst we note the following, simple result.

15
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Lemma 2 For any x�1�1 2 X1,

lim
h!0

Bh
�
x�1�1

�
= lim

h!0

�
y�1�1 2 X1 : d�

�
x�1�1; y

�1
�1
�
� h

	
=
�
x�1�1

	
:

Proof. For any sequence kn !1

�
x�1�1

	
� Bh

�
x�1�1

�
� Bh

�
x�1�kn

�
:

Hence it is su¢ cient to show that

lim
n!1

Bhn
�
x�1�kn

�
=
�
x�1�1

	
:

Since

Bh
�
x�1�k
�
�

k\
s=1

�
y 2 X : d (x�s; y�s) �

h

�s

�
we choose k = o

�
log1=� (1=h)

�
so that, as h!1, h=�k ! 0 implying

k\
s=1

�
y 2 X : d (x�s; y�s) �

h

�s

�
#

1\
s=1

fy�s 2 X : d (x�s; y�s) = 0g =
�
x�1�1

	
and the result is proved.

Proof. [Theorem 1] De�ne

� 1;n := inf
n
s > 1 : d�

�
x�1�(n�s�1); X

�s
�n

�
� hn

o
and, for i � 1,

� i+1;n := � i;n + inf
n
s > 0 : d�

�
x�1�(n+1�� i;n�s); X

�(� i;n+s)
�n

�
� hn

o
and furthermore

In := sup fi � 1 : � i;n � ng : (10)
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With this notation write, for P-almost all x�1�n,

Pn
�
xjBh

�
x�1�n
��

: =

Pn
s=1 fX�s � xg

n
d�

�
x�1�(n�s); X

�(1+s)
�n

�
� h

o
Pn

s=1

n
d�

�
x�1�(n�s); X

�(1+s)
�n

�
� h

o
=

P1
i=1

�
X�� i;n+1 � x

	
\ f� i;n � ngP1

i=1 f� i;n � ng

=
1

In

InX
i=1

�
X�� i;n+1 � x

	
:

Hence,

1

In

InX
i=1

��
X�� i;n+1 � x

	
� Pr

�
X0 � xjX�1

�1 = x�1�1
��

=
1

In

InX
i=1

�
(1� Ei)

�
X�� i;n+1 � x

	�
+
1

In

InX
i=1

�
Ei
�
X�� i;n+1 � x

	
� Pr

�
X0 � xjX�1

�1 = x�1�1
��

= I+ II

where Ei is expectation conditioning on F�� i;n. Since, by Condition 3, In ! 1 in prob-

ability (a.s.), jIj ! 0 in probability (a.s.) by the martingale strong law of large numbers.

Note that 1 � � i;n < � i+1;n � n for i = 1; :::; In � n and In !1. Hence, for any sequence
Jn !1 such that Jn = o (In) and i � In�Jn we must have (n� � i;n)!1 in probability

17
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(a.s.). Moreover, note

II =
1

In

InX
i=1

�
Ei
�
X�� i;n+1 � x

	
� Pr

�
X0 � xjX�1

�1 = x�1�1
��

=
1

In

InX
i=1

h
Pr
�
X�� i;n+1 � xjX�� i;n

�1

�
� Pr

�
X0 � xjX�1

�1 = x�1�1
�i

=
1

In

0@In�JnX
i=1

+

InX
i=(In�Jn+1)

1AhPr�X�� i;n+1 � xjX�� i;n
�1

�
� Pr

�
X0 � xjX�1

�1 = x�1�1
�i

=
1

In

In�JnX
i=1

h
Pr
�
X�� i;n+1 � xjX�� i;n

�1

�
� Pr

�
X0 � xjX�1

�1 = x�1�1
�i
+ o (1) (11)

because the second sum is O (Jn=In) = o (1). By de�nition, X�� i;n
�1 2 Bh

�
x�1�(n+1�� i;n)

�
,

so that we can explicitly write

Pr
�
X�� i;n+1 � xjX�� i;n

�1

�
= Pr

�
X�� i;n+1 � xjX�� i;n

�1 = y
�� i;n
�1 2 Bh

�
x�1�(n+1�� i;n)

��
:

(12)

Let T be the left shift operator, i.e. TXs = Xs+1, T kXs = Xs+k. Then, for any i � In�Jn,
using the explicit notation in (12),

lim
n
Pr
�
X�� i;n+1 � xjX�� i;n

�1

�
= lim

n
Pr
�
T (� i;n�1)X�� i;n+1 � xjT (� i;n�1)X�� i;n

�1

�
[by stationarity using the shift operator T ]

= Pr
�
X0 � xjX�1

�1 = y�1�1 2 Bh
�
x�1�1

��
; (13)

because for any i � In � Jn, (n� � i;n)!1 implying that for any h > 0

Bh

�
x�1�(n+1�� i;n)

�
! Bh

�
x�1�1

�
:

Since h is arbitrary we can choose h = hn ! 0 as in Condition 3 so that, Bh
�
x�1�1

�
!�

x�1�1
	
by Lemma 2. Hence, by Condition 2, the last remark together with (13) implies

that for P almost all x�1�1,���Pr�X�� i;n+1 � xjX�� i;n
�1

�
� Pr

�
X0 � xjX�1

�1 = x�1�1
����! 0,
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in probability (a.s.) for all i � In � Jn, implying jIIj ! 0 (in 11) in the same mode of

convergence because (In � Jn) =In ! 1. Since the result holds for P-almost all x�1�1, it
holds for X�1

�1 as well. Using a �nite number of brackets for ffs 2 X : s � xg ;x 2 Xg
the convergence is also uniform in x 2 X (e.g. see the proof of Theorem 2.4.1 in van der

Vaart and Wellner, 2000).

To prove the corollaries we use the following.

Lemma 3 Condition 4 implies

lim
M!1

lim
N!1

sup
n>N

Z
fx2X :G(x)>Mg

G (x)Pn
�
dxjBh

�
X�1
�n
��
= 0 a:s: (14)

Proof. [Lemma 3] It is well known that a moment condition implies uniform integ-

rability (e.g. Example 1.11.4 in van der Vaart and Wellner, 2000), i.e.

lim
N!1

sup
n>N

Z
X
G (x)p Pn

�
dxjBh

�
X�1
�n
��
<1 a:s:

for some p > 1 implies (14). De�ne

� 1;n := inf
n
s > 1 : d�

�
X�1
�(n�s�1); X

�s
�n

�
� hn

o
and, for i � 1,

� i+1;n := � i;n + inf
n
s > 0 : d�

�
X�1
�(n+1�� i;n�s); X

�(� i;n+s)
�n

�
� hn

o
which is just the sequence of stopping times de�ned in the proof of Theorem using

X�1
�(n+1�� i;n�s) instead of x

�1
�(n+1�� i;n�s). Hence, mutatis mutandis, de�ne In as in (10).

Rewrite Z
X
G (x)p Pn

�
dxjBh

�
X�1
�n
��
=
1

In

InX
i=1

G
�
X�� i;n+1

�p
.
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Then, for any In � 0, the above display is a.s. �nite if sup1�i�n<1 EG
�
X�� i;n+1

�p
< 1

for some p > 1. By stationarity this is just equal to

sup
1�i�n<1

EG
�
X�� i;n+1

�p
= sup

1�i�n<1
E
h
G
�
X�� i;n+1

�p jnd� �X�1
�(n�� i;n+1); X

�� i;n
�n

�
� hn

oi
� sup

1�i�n<1
E
h
G (X�i+1)

p j
n
d�

�
X�1
�(n�i+1); X

�i
�n

�
� hn

oi
<1;

taking the supremum over all i � n rather than � i;n � n only.

Proof. [Corollary 1] By Lemma 3 we directly work with (14). Write P (xjF�1) =
Pr (X0 � xjF�1) and de�ne GM (x) := G (x) ^M . For any �nite M ,

lim
N!1

sup
n�N

Z
X
G (x)Pn

�
dxjBh

�
X�1
�n
��

� lim
n!1

Z
X
G (x)Pn

�
dxjBh

�
X�1
�n
��

� lim
n!1

Z
X
GM (x)Pn

�
dxjBh

�
X�1
�n
��

=

Z
X
GM (x)P (dxjF�1) a:s:

where the equality follows by weak convergence (Theorem 1) because GM (x) is continuous

and bounded. By asymptotic uniform integrability the left hand side of the above display

is �nite. Hence, by the monotone convergence theoremZ
X

�
G (x)�GM (x)

�
P (dxjF�1)! 0: (15)

For simplicity assume that G only contains positive functions (otherwise deal with positive

and negative part of each function separately). Therefore, for any �nite M ,

sup
g2G

����Z
X
g (x)

�
Pn
�
dxjBh

�
X�1
�n
��
� P (dxjF�1)

�����
� sup

g2G

����Z
X
(g (x) ^M)

�
Pn
�
dxjBh

�
X�1
�n
��
� P (dxjF�1)

�����
+sup
g2G

����Z
X
[g (x)� (g (x) ^M)]

�
Pn
�
dxjBh

�
X�1
�n
��
� P (dxjF�1)

�����
= I+ II:
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Theorem 1 implies I! 0. Since g � 0,

sup
g2G

jg (x)� (g (x) ^M)j = sup
g2G

[g (x)� (g (x) ^M)]

= sup
g2G

[(g (x)�M) fx 2 X : g (x) > Mg]

� j(G (x)�M) fx 2 X : G (x) > Mgj
=

�
G (x)�GM (x)

�
:

Therefore, by the triangle inequality, Jensen inequality and then by the above display,

II �
Z
X
sup
g2G

jg (x)� (g (x) ^M)jPn
�
dxjBh

�
X�1
�n
��
+

Z
X
sup
g2G

jg (x)� (g (x) ^M)jP (dxjF�1)

�
����Z
X

�
G (x)�GM (x)

�
Pn
�
dxjBh

�
X�1
�n
������+ ����Z

X

�
G (x)�GM (x)

�
P (dxjF�1)

���� :
The �rst term can be made arbitrary small for M large enough, by asymptotic uniform

integrability and similarly for the second term by (15).

Proof. [Corollary 2] Following the proof of Corollary 1 it is enough to show convergence
for functions that are bounded and in G. Hence, by Lemma 10 in Sancetta (2007a) deduce

that Theorem 1 implies the Corollary 2 (e.g. Sancetta, 2007b, section 3.3, for more details).

Proof. [Lemma 1]Note that for any real variables (zi)i�1 and summable constants
(ai)i�1, (X

i�1
zi �

X
i�1

ai

)
�
(\
i�1
fzi � aig

)
:

To see this, consider(X
i�1

zi �
X
i�1

ai

)
�
(
fz1 � a1g \

(X
i�2

zi �
X
i�2

ai

))

and proceed by induction. Hence deduce�
d
�
x�i; X�(s+i)

�
� h

2i2�i
; i = 1; : : : ; (n� s)

�
�
n
d�

�
x�1�(n�s); X

�(1�s)
�n

�
� h

o
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by letting
P

i�1 ai = h > h
P

i�1 i
�2=2 and zi = �id

�
x�i; X�(s+i)

�
in the �rst two displays.

By Condition 5, with no loss of generality assume that d � C = 1 so that

fy 2 X : d (x; y) � 1g = X :

Letting I = I(h;�) be the smallest integer such that h=
�
2I2�I

�
� 1, the previous display

implies�
d
�
x�i; X�(s+i)

�
� h

2i2�i
; i = 1; : : : ; (n� s)

�
=

�
d
�
x�i; X�(s+i)

�
� h

2i2�i
; i = 1; : : : ; I

�
and this last display implies

nX
s=1

n
d�

�
x�1�(n�s); X

�(1+s)
�n

�
� hn

o
�

n�I(h;�)X
s=1

�
d
�
x�i; X�(s+i)

�
� h

2i2�i
; i = 1; : : : ; I

�
:

(16)

From the de�nition of I, note that for any � > 0,

I = O

 �
ln (1=h)

ln (1=�)

�1=(1+�)!

so that, for n large enough, n � I > 0: De�ne Y I
�s :=

�
X�(s+1); X�(s+2); : : : ; X�(s+I)

�
.

Then, the right hand side of (16) is the number of times (out of n� I steps) the ergodic

process
�
Y I
s

�
s�0 visits open sets of positive radius, induced by d in each coordinate, and

centered at x�1�I . By stationarity and ergodicity the process is recurrent and the number

of visits of any open set centered at x�1�I goes to in�nity as n!1 for P almost all x�1�I by
Poincare Recurrence Theorem (e.g. Theorem 6.4.1 in Gray 1998). Since h is arbitrary we

can let h = hn ! 0 slowly enough such that
�
n� I(h;�)

�
! 1 to deduce the �nal result.
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